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Abstract

It is important for network operators to carry out traffic and application characterization to gain insights
into the activity of their networks. Several studies proposed methods that extract features from network
traffic to characterize it, or to classify the application that produced it, based on a “man in the middle”
network interception point that can analyze the entire network traffic of an organization. This network
topology, however, is increasingly becoming irrelevant, due to mobile and remote traffic joining the corporate
network by passing through VPN channels or relay networks.
In this work we propose an edge-oriented lightweight traffic characterization method, based on measuring

contention on the last-level CPU cache. In contrast to previous traffic characterization methods, which
track network traffic from a central location, our method performs measurements directly on user machines,
using an unprivileged JavaScript-based webpage. Our evaluation shows that the accuracy of our cache-based
method is equivalent to that of network-based methods, both over VPN and over non-VPN networks.

Keywords: Communication Network Protocols, Network Security and Privacy, Side Channel Analysis,
Cyber-Physical Systems

1. Introduction

The growth of large local corporate computing
networks, and the increase in the number of work-
ers accessing these networks, have been accompa-
nied by increasingly complex LANmaintenance and
network security requirements. The presence of
anomalous network activity on an organizational
network can stem from computer malfunction, the
malicious activity of an infected machine, an inten-
tional or unintentional internal data breach made
possible using social engineering, and more. A de-
lay in detecting such abnormal network behavior
might interfere with an organization’s business ac-
tivity by preventing its network from supporting
the guaranteed quality of service (QoS), or allow-
ing its secrets and assets to be leaked to their oppo-
nents. Thus, it is important for network operators
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to carry out traffic and application characterization
to gain insights into the activity of their networks.

The traffic characterization task has been tradi-
tionally performed in a centralized location by a
device capable of analyzing the network activity of
the entire organization. This “man-in-the-middle”
(MITM) approach has increasingly been challenged
by traffic joining the corporate network by pass-
ing through VPN channels or relay networks. Such
traffic might be encrypted, obfuscating its ports and
IP addresses, or have modified statistical attributes,
such as packet size, directions, and timing.

The COVID-19 pandemic and the resulting iso-
lation policies have further complicated this cen-
tralized approach. As companies encourage their
employees to work from home, with some of them
even leveraging the pandemic to close most of their
offices and shifting towards working from home per-
manently, there is no longer a simple way to inter-
cept and monitor all organizational network traf-
fic. Under these circumstances, MITM traffic snif-
fers are not feasible, as they would have to be in-
stalled at the home of every employee. Software-
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based data loss prevention (DLP) tools, which are
highly-privileged local agents which monitor the ac-
tivity of corporate computers, are also less practical
on computers and mobile devices which are not un-
der the administrative control of the organization.
Furthermore, a new risk to organizational networks
has appeared, in which users connect to their cor-
porate networks using VPN, and then use these cor-
porate networks as relay points for file downloads,
media streaming, and other unsanctioned activities.
There is a need for a network analysis approach
which is focused on the end user and not on a cen-
tral approach, and which is light-weight enough to
be run on non-corporate systems with minimal in-
stallation requirements.
A field of studies related to traffic characteriza-

tion is the website fingerprinting field, where re-
searchers aim to identify the specific website surfed
to by end users [32, 25, 27]. These studies exploit
the side-channel patterns in network flows and the
timing of web page rendering, which is influenced
by the structure of web pages (e.g., images, style,
scripts). In these studies, researchers used machine
learning techniques and statistical analysis to map
these unique patterns to a specific web page and
thus violate users’ privacy.
In addition to network-based website fingerprint-

ing, there has been a series of works on perform-
ing website fingerprinting based on local side chan-
nels, as measured by an attacker-controlled website
running on the target machine [23, 2, 10, 35, 19].
In particular, cache-based website fingerprinting at-
tacks were proposed by Shusterman et al. [29]. In-
stead of analyzing websites’ network traffic, their
work measured the CPU’s last level cache con-
tention over time during web page rendering. This
measurement was performed without installing any
software on the target machine. Instead, unprivi-
leged JavaScript code, running on the target ma-
chine’s standard web browser, was used to measure
cache activity. Their method demonstrated accura-
cies similar to those of network-based cache finger-
printing, and furthermore demonstrated robustness
against network website fingerprinting countermea-
sures.
Since network-based website fingerprinting is

complemented very well by cache-based website fin-
gerprinting, we were motivated to apply the same
approach to network-based traffic and application
classification. In particular, this study is aimed at
answering the following research question: Can the
accuracy of network-based traffic and application

classification be achieved with light weight cache-
based methods?

We answer the question in the affirmative, by
describing a traffic and application classification
system built on cache-based methods, which has
comparable performance to network-based methods
without the limitations of the MITM architecture.

The contributions of our study are as fol-
lows:

• We propose a method for remote characteriza-
tion of network traffic and applications using
the last-level cache side channel. We measure
the accuracy of our system using standard met-
rics and show that it can perform traffic charac-
terization with an accuracy of around 90% and
application characterization with an accuracy
of around 83%. This performance is similar to
that of network-based methods, while requir-
ing neither an external interception point, nor
any privileged software installed on the remote
machine.

• We analyze the minimal length of cache con-
tention traces for the purpose of traffic charac-
terization, and show that a measurement pe-
riod of 10 seconds is enough to provide reason-
able accuracy.

• We show our proposed method can perform
traffic analysis on cross-traffic data, with and
without a VPN, when training is performed
without a VPN, and vice versa. In this cross-
traffic setting, the cache based approach has a
distinct advantage, providing a detection rate
that is almost 5 times higher than the network-
based approach in the traffic characterization
setting, and almost 8 times higher in the ap-
plication characterization setting.

• We publish a unique open-source dataset [30]
containing more than 600GB of cache con-
tention traces for various application profiles,
correlated with network traffic data traces for
the same activities, as well as code reproducing
the results. This dataset can be used by other
researchers to evaluate and validate additional
methods for cache- and network- based traffic
characterization.

Our work is the first time cache-based approaches
have been harnessed to the task of application char-
acterization. It improves on state of the art in
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network-based application characterization by pro-
viding an approach that provides comparable accu-
racy to network-based approaches, without requir-
ing the financial, legal, and technical challenge of
forcing all traffic to flow through a MITM intercep-
tion point.

2. Related Work

2.1. Network Traffic and Applications

There are two types of network traffic analysis.
The first is traffic characterization, which iden-
tifies the general activity of the machine’s user,
whether that be browsing the Internet, sending an
email, chatting, streaming videos, transferring files,
communicating over VOIP, sending P2P data, etc.
The second is application classification, which
identifies a specific application, such as browsers
like Chrome or Firefox browser, or a chat applica-
tion (e.g., Google Hangouts, ICQ, or Skype), etc.
Two main traffic characterization methods have

been proposed for network-based traffic analy-
sis [34]: payload-based and feature-based methods.
The payload-based method requires knowl-

edge of the protocols and the packet or flow struc-
ture. Prior research used characteristics like port
numbers [8], and the matching of protocol struc-
tures and magic words that could be parsed by reg-
ular expressions [18]. Such methods could therefore
mainly be applied on non-encrypted traffic [28].
The feature-based method uses the commu-

nication patterns and packet statistics rather than
the packet structure. Moore et al. [21] described
249 feature discriminators; the main discrimina-
tors were the packet size, packet direction, and
socket tuple, and statistical information derived
from them, such as the average, mean, and standard
deviation. As these features are derived from net-
work traffic patterns, they can be obfuscated using
tools like VPNs and relay networks (e.g., Tor net-
work [6]) or traffic fingerprinting countermeasures
[9, 36, 4] which are robust to regular packet encryp-
tion.
Machine learning (ML) algorithms are applied

to make use of these features for traffic character-
ization, as the patterns and connections between
the features might be complex or difficult to de-
fine manually. Research performed in this field has
used different combinations of features and ML al-
gorithms to classify network characteristics.
Draper-Gil et al. [7] proposed a method in which

the statistical features of traffic flows are extracted,

and then C4.5 and KNN classifiers are applied to
characterize types of traffic. The authors used a
two-stage classifier to address the challenge of de-
tecting two different types of patterns in the VPN
and non-VPN traffic; the first classifier determines
whether the traffic has VPN characteristics, and the
second one determines the type of the traffic.

Adopting their time based features, Caicedo-
Muñoz et al. [5] applied the traffic characteriza-
tion method to the QoS domain, integrating their
domain knowledge of the traffic marking process.
They suggested using a per-hop behavior (PHB)
labeling system that is compatible with the QoS
traffic marking process, and evaluated machine
learning classifiers using this labeling system.

In contrast to the previously mentioned study [7],
Yamansavascilar et al. [37] examined the applica-
tion identification problem. They proposed per-
forming feature selection using the χ2 and CFS [13]
methods before the classification.

While previous papers used statistical features
on the network flows, Lotfollahi et al. [17] proposed
using the raw packet data bytes without the IP ad-
dress as the input to a convolutional neural net-
work (CNN) classifier. Their model classified ev-
ery packet to a specific application or web activity
and outperformed the previously suggested meth-
ods [7, 37].

VPN Server

MITM Tracer

File Server

Internet

Collection Host

Architectural 
Boundary

Cache 
Occupancy

Measurement
process

Figure 1: Experimental setup – The collection host run an
application process along the cache contention measurement
process. The MITM network tracer collects the network-
associated data with the cache contention traces. The file
server and the VPN server are connected to the default gate-
way.
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2.2. Prime+Probe Last Level Cache

The Prime+Probe attack is a cache-based side-
channel attack originally designed by Osvik et al.
[24]. In [16] the authors demonstrated how a type
of Prime+Probe attack can be used to extract data
from the LLC. The Prime+Probe attack requires
the attacker process to run on the same hardware
as the victim process. This attack has two phases;
in the first phase, the attacker process primes the
cache by allocating a large buffer (called an evic-
tion set) and accessing every location in this buffer,
effectively overwriting all of the data in the cache.
In the second phase, the attacker process probes
the cache by periodically accessing every location
of the eviction set and measuring the access time,
while the victim process runs in the background.
Since the victim process must evict the attacker’s
data from the cache in order to perform its own
calculations, longer access times are indicative of
victim process activity in the specific cache set.

The authors used this information leakage to dis-
tinguish between square and multiplication opera-
tions in the RSA algorithm, allowing them to ex-
tract the cryptographic key. They also performed
a Prime+Probe attack to create a covert channel
between two processes on the same machine.

The covert channel presented in [16] requires
that the sender and receiver agree to use the same
cache set, which makes the communication initia-
tion setup very complicated. A different approach
for LLC-based covert channel, presented by Mau-
rice et al. [20], measured the entire LLC contention
rather than that of a single cache set. While this
method is slower, it makes the transmission of infor-
mation possible in noisy settings such as the cross-
VM channel.

The work of Oren et al. [23] showed the fea-
sibility of creating eviction sets using JavaScript
code, despite the virtualization layer provided by
the browser’s sandbox. Therefore they were able
to perform the Prime+Probe attack over the web.
Their methods performance achieved spatial reso-
lution similar to the native attack presented in [16].

As a result of the Spectre and Meltdown [11, 14]
attacks, browser vendors reduced the resolution of
the JavaScript timer by three orders of magni-
tude. Therefore, the precise side-channel attack
performed in [23] is no longer feasible.

A recent study of Shusterman et al. [29] used
cache occupancy channel to perform a website fin-
gerprinting attack, that identifies which webpage

the victim visits. They were able to measure the
entire LLC contention using a Prime+Probe at-
tack implemented in JavaScript. They showed that
when this cache measurement is done while at the
same time the target machine is rendering a web-
page, the resulting cache trace can be mapped to
the webpage with high accuracy. This result was
recently extended to work using CSS instead of
JavaScript, making it feasible even if JavaScript is
blocked on the target machine [31].

2.3. Towards Cache Traffic Characterization

Although traditional network-based traffic char-
acterization methods perform well, they have very
limited scalability in large organizations, where an-
alyzing the entire organization’s network traffic is
difficult to impossible. Capturing large-scale orga-
nizational network traces requires a powerful server
placed in series to the organization gateway, with
the ability to monitor, store and process a vast
amount of traces. Such an implementation might
act as a bottleneck, reducing the performance of
the network. Another limitation of this method is
the ease of manipulating the network traffic. As
workers might want to use applications prohibited
by the company, they can manipulate the network
traffic characteristics using padding and noise injec-
tion methods. One such method is BuFLO [4, 3],
whose authors noted that there is a tradeoff be-
tween network performance and security: while
padding packets and transmitting dummy packets
on the local network produces random network pat-
terns that reduce website fingerprinting classifiers’
performance, they also produce overhead that re-
duces the network capabilities. In [29], the au-
thors compared the performance of a network-based
classifier to an LLC-based classifier when apply-
ing this countermeasure. The results showed that
the network-based classifier’s performance worsens,
whereas the cache-based classifier is only slightly
affected by this countermeasure. In addition to
the above, due to the isolation policies followed the
COVID-19 pandemic, there has been a global shift
from working at a company’s offices to working from
home, and according to Bloom [1], this change is
here to stay. In these circumstances, MITM traffic
sniffers are not feasible, as they would have to be
installed at the home of every employee. In con-
trast, cache contention measurement can be easily
achieved remotely without intrusive software run-
ning on the user’s computer or home router.
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3. Methods

3.1. Security Model

In our work, we assume that the defender is an
organization providing Internet access to its users.
These users can be located on the premises of the
organization, or they may be connected remotely to
the organization through a VPN. The adversary in
our case is a user interested in running prohibited
applications, while taking advantage of the orga-
nization’s network connectivity. We assume that
the adversarial user can install and run arbitrary
applications on the remote computer. The user
can therefore also generate arbitrary network traf-
fic on the defender’s network. Specifically, the ad-
versarial user can attempt to bypass the organiza-
tional traffic inspection firewall, by masquerading
the prohibited network traffic as legitimate proto-
cols. Since the user’s computer is only partially un-
der the organization’s control, it might be difficult
to install standard monitoring and data-loss preven-
tion (DLP) tools on this computer, which require
administrative privileges to operate. The objective
of the defender in this security model is to identify
the application running on the user’s computer, un-
der these challenging software installation limita-
tions and unreliable network traffic patterns, Our
security model is inspired by several recent cases in
which computers running inside large organizations
were recruited via malware into running attacks,
such as distributed denial of service (DDoS) or ran-
somware. Our method can complement standard
malware detection countermeasures, by offering a
lightweight way of detecting nonstandard applica-
tions running on computers inside an organizational
network.

3.2. Approach

To perform cache-based application classifica-
tion, we measure the cache contention over time,
as suggested by Shusterman et al. [29]. We run
the cache contention measurement code in paral-
lel with the tracked application, on the endpoint
client. When the cache contention trace collection
is complete, we send it to a remote data collection
server, where standard machine learning tools are
used to classify the trace to one of a set of known
applications.
As we are the first to use cache contention side

channel data in order to perform traffic character-
ization, We adopt the methodology of [29], col-
lecting network traces with a MITM tracer ma-

chine as we collected the cache contention data. In
this method, we can compare traffic characteriza-
tion methods from literature applied on network
data to the results obtained using our method on
cache contention data. We stress that we collect the
MITM network traces only for comparison with re-
lated work, and do not use them directly in our
analysis.

As suggested in [7], we collected the data in two
modes: with and without a VPN. The VPN mea-
surements were conducted when both , the collec-
tion host and the the file server are connected to
the network behind the VPN server on the same
local network.

3.3. Machine Learning Evaluation.

In this work, we compared cache based traffic
analysis to the network based traffic analysis meth-
ods proposed in the literature. We used two types
of models in our evaluation: A classical machine
learning model, and a deep learning model.

For the classical model experiments, we used
the model that outperformed the others on traffic
characterization task. We extracted the features
mentioned in Section 3.7 from cache contention
traces sampled at a rate of 500 Hz. The collection
time of each cache trace was 10 seconds, for a total
of 5000 data points per trace. The models we com-
pared were Gradient Boosting, Random Forest and
SVM classifiers, as implemented in the scikit-learn
0.21.3 repository for Python 3.7 [26]. In terms of
feature hyper-parameters, for the Gradient Boost-
ing classifier we used 500 estimators and a learn-
ing rate of 0.1, for the Random Forest Classifier
we used 200 estimators, and for the SVM classi-
fier we used the RBF kernel. The results reported
in table 1 show that the best performing classical
classifier was Random Forest. We thus decided to
use this classifier for the remainder of the paper.

Table 1: Classical Cache-Based Classifiers Comparison

Classifier F1-Score
Gradient-Boosting 83±1.5
Random Forest 86.9±0.9
SVM 64.2±1.2

We now describe our deep learning mode ex-
periments. Our cache contention dataset is high-
dimensional, and requires many hours of human
work for collection. This motivated us to use a
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neural network with a shallow structure and a small
amount of weights, to prevent having the network
overfit the relatively small training dataset. The
network we evaluated is illustrated in Figure 2. Its
architecture was proposed by Shusterman et al. [29],
and we applied some fine tuning to make it better
fit our data. It consists of two convolutional blocks
of a convolutional layer with the ReLU activation
function and a max pooling layer, an LSTM block
which consists of an LSTM layer and a Dropout
layer, and a classification block which consists of
dense layer with softmax activation function. The
convolutional blocks extract local features out of
the input vector and reduce the dimensionality. the
LSTM block extracts temporal features out of the
local features. Finally, the softmax layer outputs
the probability of a trace belong to each class. This
model was implemented using the TensorFlow 2.1
repository in Python 3.7. Full details of the hyper-
parameter tuning of the LSTM network are pro-
vided in Appendix .3.

Input

CNN

Max-Pool
LSTM

Flatten

Dropout Dense
Max-PoolCNN

Figure 2: LSTM classifier architecture for cache contention
data

To evaluate the models, we used the F1-score and
reported results of stratified data with 10-fold cross-
validation to reduce bias.

3.4. Experiments

To evaluate the effectiveness of our technique in
traffic characterization and application classifica-
tion we conducted a series of four experiments. Our
first experiment is used to calibrate our trace length
and extract features. Next, we evaluate our tech-
niques and compare them to the state of the art
methods from the literature.

Trace length optimization. To understand
the tradeoff between the length of the cache con-

tention trace fed to the classifier and its per-
formance, where a smaller input would provide
a shorter trace collection time and a larger in-
put might improve the accuracy. The purpose of
this experiment was to determine the minimum
trace length that provides adequate classifier per-
formance for the traffic characterization task, and
the trace length that provides an optimal balance
with the classifier’s performance.

Traffic Characterization Evaluation. We as-
sessed the performance of the Random-Forest and
LSTM classifiers trained on the cache contention
data to distinguish between eight categories of traf-
fic: file transfer, VOIP-video, VOIP-audio, chat,
email, P2P, streaming, and web browsing. We com-
pared them to the network traces classifiers pro-
posed in previous works [7, 17] on two types of traf-
fic: with and without a VPN.

Application Classification Evaluation. We
compared the performance of classifiers trained on
cache contention datasets in the task of application
classification to the classifiers proposed in previous
works [7, 17] . For this task, we labeled our data
according the 26 applications that created it (de-
scribed in Appendix .2).

Cross-Traffic Classification. We examined
the ability of a classifier trained on VPN data to
classify non-VPN traffic data and vice versa. This
experiment was also aimed at demonstrating the ro-
bustness of a classifier trained on non-VPN traffic
when coping with previously unseen VPN network
traffic. This case was measured using F1 score when
considering the model’s most probable result, and
when the result appears in the top-3 most probable
classes. The top-3 evaluation method assumes that
there is a prior distribution that might be helpful
in choosing the most probable class out of three.

3.5. Hardware Configurations

The data collection setup for cache contention
and network traces presented in Figure 1 consists
of the following four machines, each of which runs
the Ubuntu 18.4 operating system:

Collection host – A machine with an Intel Core
i7-6600U CPU at 2.60GHz with 16GB RAM. This
machine run cache contention data measurements
script on Firefox browser (version 77.0).

MITM tracer – A machine with an Intel Core
i5-4570 CPU at 3.20GHz with 8GB RAM. This ma-
chine has two network cards that are bridged; one
of the ports is connected to the endpoint user, and
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Figure 3: File transfer data distribution — size of files trans-
ferred when collecting data traces in non-VPN network.

the other is connected to the default gateway. The
network traces were collected with tcpdump appli-
cation (version 4.9.3).
File server – A machine with an Intel Core i7-

6600U CPU at 2.60GHz with 16GB RAM. It con-
tains the files transmitted to the user machine.
VPN server – A machine with an Intel Xeon

E5-2650 CPU at 2.00GHz with 40GB RAM. This
machine runs the The OpenVPN server (version
2.4.4) for the VPN measurements.

3.6. Data Collection

We collected the cache contention and network
traces of different endpoint activities: download-
ing and uploading data, making VoIP audio and
video calls, chatting , emailing and transferring P2P
data. The network traffic and cache contention
side-channel data is collected when performing each
of these tasks separately . Some of the activities
were performed automatically, while imitating the
real world, such as web browsing and streaming,
and the other activities were performed manually.
In total, each activity has a total of two hours of
data collected with a VPN, and two hours of data
collected without a VPN; among them, the time of
running applications performing the same activity
is equal. The application details are as follows:
File transfer. — We used three different file

transfer methods to collect data: FTPS, SFTP, and
Skype. For each application we captured separately
the download and the upload data. To support cov-
erage and diversity in the data collection, different
types of files were transferred: jpeg, mp4, mp3, zip,
pdf, exe, and bin, and the size of the files varied, as

seen in the distribution presented in Figure 3. The
collection setup had the client and the file server
machines connected to the same LAN.

For the FTPS method, we used the ProFTPD
server (version 1.3.5e) [22] and a FileZilla client ap-
plication [12] (version 3.28.0). For the SFTP proto-
col, we used OpenSSH (version 7.6p1) both for the
client and the server machines. Another method
used was the Skype for Linux [33] application (ver-
sion 8.57.0.116). In contrast to the other methods,
Skype can only send files that are a maximum of
300MB each time, so this reduced the transferred
file size variance.

VoIP-Audio — The following applications were
used to collect VoIP-audio data: Skype version
8.60, Facebook on the Firefox 77.0 browser, and
Skype for Linux version 8.60. This data was col-
lected during an audio-only human conversation,
collecting cache contention data and network traf-
fic only from one side of the conversation.

VoIP-Video — Data was collected during VoIP
video conference calls on three applications: Zoom
for Linux (version 5.0.4), Skype for Linux (version
8.60), and Google Meet on the Chrome browser
(version 80.0).

Web Browsing — Browsing data was collected
using the Chrome 80.0 and Firefox 77.0 browsers.
To simulate real-world web browsing, we used the
Alexa Top 100 most popular websites, and ran a
Python crawler that randomly accessed web pages
while clicking some links on the page. To mimic hu-
man behavior, we simulated the dwell time, which
refers to the time a user spends viewing a docu-
ment after clicking on it using a search engine link.
In this simulation, we used the Weibull distribution
[15] with a shape parameter of three multiplied by
65 seconds; this takes an average of one minute per
web page. We clarify that we did not collect data
from browsing over Tor network, or with the Tor
browser.

Chat — Chat data was collected when using
five different applications: ICQ (version 10.0.8172)
and Skype (version 8.60) native applications, and
WhatsApp, Facebook, and Google Hangouts chats
(the data from the latter three was collected while
the apps were running on the Firefox 77.0 browser).

Email — The email data was collected using
Thunderbird (version 68.8), from three protocols:
SMTP, IMAP, and POP3. When collecting SMTP
data, we tracked the keystrokes and email trans-
mission, and for POP3 and IMAP, incoming mail
protocols did not include the keystrokes or trans-
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mission.
Peer-to-Peer – P2P data was collected using

two different P2P applications - qBittorrent (ver-
sion v4.2.5) and Transmission (version 2.92). 3
presents the downloaded file size distribution.
Streaming — Streaming data was collected us-

ing two different streaming platforms: YouTube
and Vimeo, both of which were running on the Fire-
fox 77.0 browser. We created a playlist in YouTube
and a watch later playlist in Vimeo, both of which
contained different sized videos, and played the
playlists when collecting the cache contention data.

3.7. Feature Extraction

Before feeding the cache contention data to the
classifier, we transformed the raw data to a feature
vector. Following Yamansavascilar et al. [37], these
features were validated as contributing to the model
performance using a the χ2feature selection test.
These are the features we selected:
Cache contention histogram bins – Figure 4

presents the cache contention distribution when
performing various network activities. The cache
contention is measured as the time it takes to
prime the last level cache. The cache measure-
ment script runs on Firefox 77.0 and used its 2-msec
performance.now timer. As seen in the figure, dif-
ferent web activities have different cache contention
distributions.
Cache contention ∆s histogram bins – thir-

teen features were created by using calculating the
delta between every two adjacent cache contention
measurements, then extracting the histogram bins
from these difference vectors.
Temporal features – statistical features were

extracted from the raw data, e.g., average, stan-
dard deviation, mean absolute deviation, skewness,
kurtosis, and zero-crossing rate.
Spectral features – statistical features were ex-

tracted over spectral representation of the raw data.
For the transformation to the spectral representa-
tion, we used the absolute values of the FFT (fast
Fourier transform) function on the raw data. Then
we extracted statistical features, e.g., spectral cen-
troid, spectral entropy, spectral spread, spectral
skewness, spectral kurtosis, spectral flatness, and
spectral irregularity. These statistical functions are
described in Appendix .4.

3.8. Reproduction and Comparison

Although our proposed data collection method
relies on the cache contention side channel rather
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Figure 4: Distribution of cache contention over 2 hours of
each protocol without VPN.

than network traces, we compare the performance
of our machine learning models to the the network
traffic characterization and application classifica-
tion methods proposed in recent studies [7, 17]. Be-
fore applying the preprocessing stages of previous
works, we filtered the irrelevant traffic of several
known ports (see a list of these ports in Appendix
.1.) from the network traces. When evaluating the
methods proposed by Draper-Gil et al. [7], we used
their Näıve Bayes model with the features men-
tioned in their paper. When evaluating the meth-
ods proposed by Lotfollahi et al. [17], we used their
CNN model. As in [17], we masked the IP addresses
to avoid bias toward a specific address.

4. Results

4.1. Performance vs Time Optimization

In our analysis of the traffic characterization re-
sults, we first evaluate the influence of the trace
length on the model performance. In this exper-
iment, we evaluate several models with different
cache contention feature vector lengths, from one
second to 1.5 minutes. Figure 5 shows the tradeoff
between the cache contention trace length and the
model performance.

The Y-axis indicates the average F1 score of the
random forest model with VPN data based on 10-
fold cross-validation, and the X-axis indicates the
cache contention trace length. Based on this exper-
iment, we can see that the classifier’s best perfor-
mance is obtained when the cache contention trace
size is 20 seconds, with an F1 score of 87.1%. We
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Figure 5: The tradeoff between cache contention trace length
and the random forest model performance.

can also see that a trace length of one second per-
forms adequately and achieves a score of 70%. The
trace length we use for the rest of experiments is 10
seconds, a length which achieves an F1 score that
is just 0.2% lower than that of a 20 second trace,
but its collection time is two times shorter.

4.2. Evaluation of Traffic Characterization Models

Here we compare the performance of our classi-
fiers trained on cache contention traces to the classi-
fiers trained on network traces when performing the
traffic characterization task. For classification of
cache traces, we use the Cache-Random-Forest and
Cache-LSTM models as described in Section 3.3.
For the network traces classification, we use clas-
sifiers from the literature: Network-Näıve-Bayes,
based on Draper-Gil et al. [7], and Network-CNN,
based on Lotfollahi et al. [17]. The results in
Table 2 show that both neural network models
(Cache-LSTM and Network-CNN) perform better
than their classical machine learning counterparts
(Network-Näıve-Bayes and Cache-Random-Forest).
Also we can see that the Cache-LSTM classifier has
similar results on VPN and non-VPN data, which
means that it is not affected by the difference in the
traffic type.
When looking at VPN vs non-VPN traffic in re-

sults in table 2, we can see that, with the excep-
tion of the Network-Näıve-Bayes classifier, traces
are easier to classify when data collected on VPN
network using the other methods. These results
show that despite the presumed security of the VPN
network, it provides cleaner traces in both of the
side channels, allowing better classification of a web
activity.
Further, we investigate the weaknesses of the

deep learning models that performed best for ev-
ery dataset: the Cache-LSTM and Network-CNN

models. The confusion matrices in Figures 6,7 show
the misclassification of these models. In this figure,
the vertical axis is the true label, and the horizon-
tal axis is the predicted label. The color and the
percentage displayed a the matrix present the prob-
ability of a class in the vertical axis to be classified
as a class on the horizontal axis.

In the confusion matrices we can detect 3 types
of behaviors – Classes with high percentage of clas-
sification as the true class, classes with low percent-
age of misclassification distributed equally over the
other labels, indicating a class which some of its
labels were hard to identify, and finally a case in
which several classes have similar traces, and then
these classes have high percent of misclassifications
between them and low percent of misclassifications
with other labels. In the Cache-LSTM confusion-
matrix with non-VPN data 6a we can see a con-
fusion between Emailing and Browsing traces. In
the confusion matrix of Network-CNN with non-
VPN data 6b we can see two types of behaviors:
a confusion of between Emailing and all other la-
bels outside of VoIP-Audio and VoIP-Video, and
the File-Transfer activity which has a small per-
cent of misclassification with Browsing, Chatting
and Streaming.

When analyzing the confusion matrices of VPN
data(see figures 7), the Cache-LSTM classifier in
Figure 7a misclassifies FTP and P2P labels as
Browsing, and the Browsing label might be mis-
classified with P2P traces. The Network-CNN
model classifications on VPN traces exhibit a small
amount of misclassifications of Chatting traces with
the Emailing label.

4.3. Evaluation of Application Classification

Here we compare the performance of cache and
network classifiers in application classification task.
The results of the experiment show that the Cache-
LSTM outperforms the other classifiers in non-VPN
data whereas Network-CNN is better in classifica-
tion of the VPN data.

Further analysis of Table 2) shows that the non-
VPN dataset is more challenging for classifiers than
the VPN dataset, as in the traffic characterization
task. The Cache-LSTM model achieves the best F1
score for the non-VPN dataset; this is followed by
the Network-CNN model. We found that the classi-
cal models obtain poor results in this task, but the
Cache-Random-Forest model performs better than
Network-Näıve-Bayes. For the VPN dataset, the

9



Table 2: Model Performance comparison

Classical Models Deep Learning Models

Task Cache-Random-Forest Network-Näıve-Bayes [7] Cache-LSTM Network-CNN [17]
Traffic Non-VPN 62.2±4.8 72.9±1.2 89.6±1.3 84.2±0.2

Characterization VPN 86.9±0.9 57.1±1.5 90.7±0.1 97.9±0.1

Application Non-VPN 55.4±2.8 24.9±0.2 83.2±3.3 77.1±4.5

Classification VPN 79.2±1.4 31.6±0.3 84.7±2.0 97.3±1.7

Figure 6: Traffic Characterization on No VPN data Confusion Matrices.
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(a) Traffic Characterization on Cache Contention data con-
fusion on LSTM classifier.
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(b) Traffic Characterization on Network data confusion on
CNN classifier [17].

Network-CNN model achieves the best result, and
this is followed by the Cache-LSTM model.

The confusion matrices of deep learning models
with non-VPN data are presented in Figure 9. In
Figure 8a , which presents the confusion matrix of
the Cache-LSTM model, it can be seen that the ap-
plications for which there is the most confusion are
from within traffic characterization categories, such
as Chrome and Firefox browsers, which produce
similar cache contention characteristics, as well as
qBittorrent and Transmission, which are both used
for P2P transmissions.

Another interesting insight is that although all
of the chat and email traces of cache contention
data were captured, along with the effect of the
keystrokes on the keyboard, the confusion between
them is not high. When examining the confusion
matrix of the Network-CNN classifier in Figure 8b,
we can see that it struggles with classifying the
chat-WhatsApp and email-smtp categories, achiev-
ing less than 15% accuracy, and with classifying
chat-skype, achieving 41% accuracy for that cate-
gory.

When examining both confusion matrices of the
VPN and non-VPN data (see Figures 8a,9a), the

LSTM model trained on cache contention data ex-
periences confusion within each activity, such as
browsing, chatting, and file transferring. The con-
fusion matrix of the Network-CNN classifier is pre-
sented in Figure 9b; The confusion in this model is
mainly between the P2P applications: qBittorrent
and Transmission.

A detailed analysis of per label classification in
table 3 shows that both Network-CNN and Cache-
LSTM classifiers do not have significant difference
between precision and recall inside any label. This
result confirms that there is no classification bias
toward any label.

4.4. Cross Traffic Classification

In the experiment on the cross-traffic classifier,
we examine the ability of a classifier trained on non-
VPN dataset traces to classify VPN dataset traces
and vice versa. We discuss the results for both cases
together, as they achieved similar performance. In
this experiment, only the deep learning models that
performed better than the classical models are eval-
uated. The advantage of the Cache-LSTM classi-
fier over the Network-CNN classifier can be seen
in Table 4. On the traffic characterization task,
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Figure 7: Traffic Characterization on VPN data Confusion Matrices
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(a) Traffic Characterization on Cache Contention data con-
fusion on LSTM classifier.
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Figure 8: Application Classification on VPN data Confusion Matrices.
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LSTM classifier
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Figure 9: Application Classification on No VPN data Confusion Matrices
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[17].

the Cache-LSTM classifier obtains a top-1 F1 score
that is 30% higher than that of the Network-CNN
classifier. When we observe the top-3 F1 score, the
case in which there is some prior information on
the user’s activity on the network, we can see that
the results of the classifiers increase to 75.1% and
41.7% for cache and network classifiers respectively.
On the application classification task, the results of
the Network-CNN classifier drop to the base rate
for both the top-1 and top-3, whereas the Cache-
LSTM classifier achieves a rate significantly above
the base rate, with results of over 25% and over
50% for the top-3 F1 score.

5. Discussion

Our results show that cache-based characteriza-
tion can be used as a low-infrastructure alternative
to network-based traffic and application character-
ization. The cache-based method achieves similar
results to the network-based method in most sce-
narios, and is significantly better in detecting traffic
in the cross-traffic classification task.

5.1. Real-World Practicality

When deploying our proposed system in a real-
world production setting, two additional factors
need to be considered: the performance and com-
munications overhead related to a large-scale sys-
tem deployment, and the effects of adversarial users

who intentionally wish to circumvent the classifica-
tion system.

The machine learning training process is per-
formed offline, and as such has no effect on the
dynamic runtime performance of the system. The
only overheads we therefore need to consider are
related to the online behaviour of the system, and
can be split into two parts – the communications
overhead between the endpoints and the server, and
the inference time on the server itself. Each cache
trace, which is the item of data sent from the end-
points to the server, consists of 5000 16-bit integer
values, collected over a period of 30 seconds. Even
if we use very inefficient uncompressed JSON en-
coding for this data, the worst-case outgoing band-
width from each endpoint is less than 10 kilobits
per second, a value unlikely to have an impact on
the endpoint’s network performance. The inference
speed of the cache LSTM classifier, as measured on
our dual socket Intel Xeon E5-2660 server, is less
than 25 microseconds per inference, equivalent to
over 40K classifications per second. We can there-
fore conclude that the runtime performance of the
system is appropriate for large-scale deployment.

Network-based classifiers can be intentionally cir-
cumvented by adversarial users, for example by hid-
ing the BIND version for the DNS server, by using
non-standard ports or proxy servers, or by apply-
ing traffic shaping and filtering methods such as
BuFLO [4, 3], which completely remove all signal
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Table 3: Application Classification per label Comparison

NoVPN VPN
Cache-LSTM Network-CNN Cache-LSTM Network-CNN

precision recall precision recall precision recall precision recall

Browsing-chrome 0.67 0.69 0.71 0.65 0.64 0.73 0.97 1.00
Browsing-firefox 0.69 0.68 0.71 0.77 0.65 0.53 0.87 0.90

Chat-facebook 0.74 0.70 0.81 0.86 0.74 0.65 0.98 0.99
Chat-hangouts 0.57 0.68 0.77 0.78 0.70 0.73 0.87 0.85
Chat-icq 0.91 0.95 0.83 0.82 0.83 0.95 0.95 0.98
Chat-skype 0.83 0.72 0.50 0.38 0.81 0.85 0.99 0.99
Chat-whatsapp 0.57 0.49 0.10 0.10 0.72 0.57 0.97 0.97

Email-imap 0.66 0.64 0.74 0.73 0.85 0.81 0.98 0.96
Email-pop3 0.68 0.67 0.75 0.66 0.93 0.93 0.84 0.88
Email-smtp 0.77 0.69 0.38 0.13 0.87 0.89 0.94 0.98

FTP-ftps-download 0.83 0.83 0.83 0.81 0.83 0.78 0.99 1.00
FTP-ftps-upload 0.91 0.91 0.69 0.78 0.82 0.80 1.00 1.00
FTP-sftp-download 0.86 0.88 0.98 0.99 0.76 0.72 0.99 1.00
FTP-sftp-upload 0.95 0.86 0.98 0.99 0.98 0.96 0.99 1.00
FTP-skype-download 0.76 0.82 0.63 0.67 0.73 0.63 0.99 1.00
FTP-skype-upload 0.79 0.79 0.69 0.80 0.63 0.71 0.99 1.00

P2P-torrent 0.82 0.79 0.95 0.96 0.85 0.87 0.91 0.97
P2P-transmission 0.84 0.89 0.79 0.86 0.78 0.84 0.96 0.91

Streaming-vimeo 0.98 0.94 0.78 0.84 0.99 0.98 0.99 1.00
Streaming-youtube 0.89 0.96 0.82 0.88 0.97 0.96 1.00 1.00

Voip Audio-facebook 0.97 0.99 0.99 0.96 0.92 0.92 0.98 0.99
Voip Audio-meet 0.95 0.93 0.96 0.84 0.96 0.97 0.98 0.93
Voip Audio-skype 0.95 0.94 0.99 0.99 0.93 0.92 0.99 1.00

Voip Video-meet 0.98 0.98 0.95 0.99 0.96 0.97 0.97 1.00
Voip Video-skype 0.97 0.97 0.97 0.99 0.99 0.99 0.98 1.00
Voip Video-zoom 0.98 0.99 0.93 1.00 1.00 1.00 0.99 0.98

Weighted Average 0.84 0.83 0.83 0.84 0.86 0.85 0.96 0.97

from the network trace, making classification im-
possible. Similarly, cache-based classifiers can also
be targeted and misled by adversarial users. For
example, the collection script itself may be dis-
abled by the user, for example by the use of a
customized script blocker. The user may also at-
tempt to run noise-generating processes on the sys-
tem that artificially increase the noise level of the
cache contention signal, making analysis more dif-
ficult. As shown in related works, both of these
approaches cannot completely defeat our approach.
Cache contention measurements have been shown
to be possible even with scripting completely dis-
abled [31], meaning that as long as the user is ac-

cessing company-provided websites, his computer
can be analyzed, even with a script blocker active.
Cache-based measurements have also been shown
to withstand traffic shaping countermeasures, and
mechanisms that introduce noise to the cache can
only attenuate, but not completely defeat, cache-
based website fingerprinting [29].

5.2. Evaluation in a Work-From-Home Setting

One unique advantage of our approach is its abil-
ity to classify the traffic of computers located out-
side the corporate network. This trend of employ-
ees working from home is increasingly prevalent due
to the repercussions of the COVID-19 pandemic.
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Table 4: Model Performance comparison

Network-CNN [17] Cache-LSTM

Task Top-1 Top-3 Top-1 Top-3
Traffic Train: Non-VPN / Test: VPN 15.5±1.3 41.7±2.2 50.3±2.3 75.1±3.0

Characterization Train: VPN / Test: Non-VPN 13.5±1.8 36.7±2.3 48.6±2.7 77.9±2.5

Application Train: Non-VPN / Test: VPN 4.6±0.8 15.22±1.8 24.0±1.8 51.1±2.4

Classification Train: VPN / Test: Non-VPN 3.7±0.7 11.5±1.8 26.6±2.4 51.9±2.3

To evaluate this setting, we set up a Wireguard
VPN connection between an endpoint in Israel and
a VPN server in the United States, and used this
setting to capture a sequence of 10-minute web
browsing sessions, using both the Chrome and the
Firefox browsers. Next, we attempted to classify
the traffic type of these captured traces, using an
LSTM classifier trained in a local deployment set-
ting. Even without modifying the classifier model,
the pre-trained LSTM classifier was able to classify
these traces with a recall rate of 60.1±4.8%, a value
significantly higher than the base rate of 12.5%.

5.3. Comparing our Approach to Network-Based
Classifiers

Network-based traffic classification is a useful
tool which is deployed and used by many net-
work operators and organizations. It is interesting
to consider the pros and cons of our cache-based
approach, when compared to classical network-
based traffic classification. In terms of raw accu-
racy, as our results demonstrate, the cache-based
method has similar or better performance to the
network-based method. The main difference be-
tween the network-based method and the cache-
based method is in the added infrastructure require-
ment – the network-based method requires adding
a costly MITM interception point that collects and
analyzes all traffic entering and leaving the organi-
zation. Once this extra hardware is installed, no ad-
ditional changes need to be made to the endpoints
themselves, and a single unit of interception hard-
ware can analyze the traffic of the entire organiza-
tion. A user inside the organization can defeat the
MITM interception point by using an alternative
connection to the Internet, for example a cellular
hot spot. The cache-based method, on the other
hand, does not require this interception point. In-
stead, it requires that a small amount of unprivi-
leged JavaScript code be run on each computer to

be analyzed. The cache-based method is applied to
all of the user’s activity, regardless of the type of
network connection used.

Comparing the two approaches, the network-
based approach may be easier to deploy for organi-
zations with the financial, legal, and technical abil-
ity to force all traffic to flow through a MITM inter-
ception point, and to force standard hardware and
networking configurations on all users inside the or-
ganization. The cache-based approach, on the other
hand, may be more appropriate for companies inter-
ested in occasionally analyzing the traffic patterns
of a subset of users without an expensive investment
in monitoring hardware.

5.4. Dataset Availability

The most important resource for traffic charac-
terization studies is a labeled dataset. Collecting
unlabeled network or cache contention traces might
be easy, but collecting a labeled dataset requires
hands-on manual data collection and labeling per-
formed by humans in order to preserve authentic
traffic characteristics. Currently, the most com-
monly used public dataset in the area of traffic char-
acterization is the ISCXVPN2016 [7] dataset. The
dataset compiled for our research may contribute
more widely to the areas of network traffic analy-
sis and cache contention-based traffic analysis. We
captured traces of cache contention data related
to network traffic data. The over 600GB dataset
we created allowed us to compare various methods;
it also promotes research in both areas. Further-
more, this dataset can be used by other researchers
to evaluate and validate their methods; it can also
help them avoid bias towards PCAP features such
as IP addresses and ports, and also avoid bias to-
wards specific world regions and network infrastruc-
ture parameters. Our full dataset of network trace
PCAP files, the related JSON files containing the

14



labeled cache contention data, together with code
reproducing the results, is available online [30].

5.5. Conclusions

In this work, we investigated the ability of cache
contention traces to perform traffic characterization
and application classification. While previous stud-
ies performed these tasks on data that could only be
collected from within the organizational network,
the proposed side channel data collection method
expands the borders of traffic characterization, al-
lowing us perform this task remotely, without being
dependent on the user’s current network.
We collect unique datasets of cache contention

traces with their related network traces. These
datasets contain traces collected under two types
of network configurations: with and without VPN.
We propose two classifiers for the performance

of traffic characterization and application classifi-
cation tasks, a classical machine learning classifier
and deep learning classifier. Our deep learning clas-
sifier, working on cache contention data, achieves
results comparable with the state-of-the-art models
applied to network traces.
While our classifier of cache-based classified

achieves similar results on both settings of VPN
and non-VPN dataset, the network classifier per-
formane degrades while classifying non-VPN data.
We can speculate that the network VPN data is less
noisy than the non-VPN, since it is run on a more
isolated environment.
Finally, we evaluate the classifiers on different

settings of cross-traffic classification, in which the
classifiers trained on non-VPN data are tested on
VPN traces, and vice versa. In this case, cache-
contention traces outperform the state-of-the-art
network traffic characterization model, and show
that they are more resilient to switching between
network settings.
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Appendices

Appendix .1. Filtered ports

Ports and their protocol names, which were fil-
tered before the training of network based models
to enhance the classifier performance:

Prot Number Protocol

53 DNS
67 DHCP
68 DHCP
123 NTP
137 NetBios
138 NetBios
139 NetBios
161 SNMP
427 SLP
546 DHCPv6
547 DHCPv6
1900 SSDP
5353 mDNS
5355 LLMNR

Appendix .2. Application Classification Labels

chrome
facebook
firefox
ftps-download
ftps-upload
hangouts
icq
imap
meet
pop3
sftp-download
sftp-upload
skype
skype-download
skype-upload
smtp
torrent
transmission
vimeo
whatsapp
youtube
zoom

Appendix .3. Hyperparameter tuning

Table .5: Hyperparameters search space of the LSTM neural
network:

Hyperparameter Value Space

Optimizer Adam Adam,Adamax, Adadelta, RMSprop
Learning rate 0.001 0.001–0.002
Loss function Categorical Crossentropy
Epochs 50–80 Early stop by accuracy
Batch size 128 32 – 256
Input units 10000 500 – 90000
Convolution layers 2 1–4
Kernel size 16,8 2–31
Filters 256 2–512
Strides 3 1–4
Pool size 4 2–8
LSTM units 32 4 – 128
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Appendix .4. Feature Extraction

Table .6: Features function definition

Feature Function

Spectral Centroid
∑n=0

N−1 f(n)x(n))∑n=0
N−1

x(n))

Entropy −
∑

x∈0 x log2 x)

Skewness µ3

σ3

Kurtosis µ4

σ4

Spectral Flatness
exp( 1

N
)
∑N−1

n−0 lnx(n)

1
N

)
∑N−1

n−0 x(n)

spectral irregularity
∑Nb/2

k=2 |an,k − an,k−1|
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