
Characterization and Detection of Cross-Router Covert Channels

Oren Shvartzman, Adar Ovadya, Kfir Zvi, Omer Schwartz, Rom Ogen, Yakov Mallah, Niv Gilboa, and Yossi Oren
Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501 Israel.

Abstract

In covert channel attacks, an adversary seeks various means to influence a tangible characteristic of a system, and then
makes the systems leak information by measuring this characteristic. Covert channels are, by nature, very elusive. This
makes it very difficult to identify them and defend against attacks that use these channels to leak sensitive information.
Thus, they are a serious threat to the security of many systems.

In this paper, we present two network timing covert channel attacks, and a defense mechanism against them. The
purpose of the proposed attacks is to leak sensitive information between two logically separated (or isolated) networks
that are hosted by a single router – one that is connected to the Internet, and another that is isolated and contains
sensitive information. The attacks build on the fact that the response time of the router for a specific type of packet
sent from a device that is connected to it is usually predictable, given the network topology. By interacting with the
single shared router in a specific manner, an attacker can increase the router’s packet response time. The interaction is
determined based on the information to be leaked, so the receiver (a computer located on the Internet-connected network)
can measure the delayed packet response times and decode the sender’s signals (which operates from the isolated network)
to receive classified information. The two classes of attacks presented in this work differ in the way that the delay is
caused. In the cross-router covert channel (CRCC) attack, the sender overloads the router with control-plane packets; in
the Wi-Fi micro-jamming attack, the sender uses a pre-installed implant to transmit single-tone signals in the 2.4GHz
frequency range, disturbing the router’s packet transmissions. We showed that both attacks can influence a wide range of
router brands and Wi-Fi capable devices and evaluated the optimal settings for both attacks when using different types
of packets, transmission power, and data transmission rates.

Our proposed defense mechanism is based on semi-supervised machine learning and deep learning algorithms, which
are both used for novelty detection in network traffic. By detecting unusual traffic, we can identify the disturbances
needed to leak the information. The system can then respond by blocking the suspicious devices that are involved in
the attack. We evaluated the attacks in noisy and noise-free environments, successfully detecting both attacks in both
environments. All the data and code, which includes the implementation of the attacks and the defense mechanism, is
published as a benefit to the research community.

Keywords: Covert Channels, Network Intrusion, Novelty Detection, Machine Learning, Deep Learning.

1. Introduction

Network separation and isolation are important com-
ponents of many organizations’ security policies. The goal
of such policies is to prevent network intrusion and infor-
mation leakage by separating sensitive network segments
from other segments of the organizational network and
from the Internet. Sensitive traffic (or data) sent over such
network segments may include mission-critical business
documents, control data for industrial systems, and private
health records. Less sensitive data may include multimedia

Email address: orenshva@post.bgu.ac.il,
adarov@post.bgu.ac.il, zvikf@post.bgu.ac.il,
omershv@post.bgu.ac.il romog@post.bgu.ac.il,
mallah@post.bgu.ac.il, gilboan@bgu.ac.il, yos@.bgu.ac.il
(Oren Shvartzman, Adar Ovadya, Kfir Zvi, Omer Schwartz, Rom
Ogen, Yakov Mallah, Niv Gilboa, and Yossi Oren)

streams, environmental sensor readings, and data related
to smart home devices.

The above-mentioned network isolation can also be
extended to the networked devices themselves. While some
devices are protected from security risks by their owners
and manufacturers, either through careful administration
or by using automatic updates, other networked devices,
such as Internet of Things (IoT) nodes [1] and medical
devices [2], are difficult or impossible to patch, and are
at greater risk of malware infection. It is particularly
important to isolate such less-secure networked devices
from other devices on the network.

A common network isolation approach is to separate
one physical network into multiple logical networks. Many
routers provide this functionality by splitting the network
into a host network and a guest network. The router
discards any traffic traveling between one network and the

Preprint submitted to Elsevier December 17, 2022

other, enforcing separation as long as nodes on the two
networks do not connect to a common node on the Internet.

Logical isolation is not only common in practice, but it is
actively recommended as a security measure. For example,
the U.S. National Institute of Standards and Technology
(NIST) [3] recommends isolating industrial control system
components, which typically have monolithic software in-
stallations that are difficult to upgrade and maintain, into
dedicated network segments, isolated from the main cor-
porate information technology (IT) network. Based on
this recommendation, the U.S. Department of Veterans’
Affairs (VA) created the medical device isolation architec-
ture (MDIA) [4], which mandates the use of software-based
mechanisms to isolate medical devices and prevent their
traffic from entering the hospital’s networks of Veterans’
Affairs hospitals.

In this work, we present two attacks that use network
timing covert channels to break logical network separation
and exfiltrate data in a setup that includes two logically
isolated networks supported by a single router. One of
the networks is not connected to the Internet and handles
sensitive information, while the other network is a public
Internet-connected network. In the proposed attacks, we
assume that the attacker has successfully installed malware
on at least one machine in each network, and that the mal-
ware has already obtained the desired sensitive information
from the isolated network (see Section 4.1 for more details).
The malware in the isolated network will be referred as
the sender, and the malware in the public network will be
referred as the receiver. In both attacks, the sender uses
network timing covert channels as a means of leaking the
sensitive information to the receiver. The attacks differ
in the way that the information bits are signaled by the
sender to the receiver. In the first attack, called the cross
router covert channel (CRCC) attack [5], the sender over-
loads the router with control-plane packets according to
the leaked information bits. In the second attack, called
the Wi-Fi micro-jamming attack [6], the sender uses an
implant capable of transmitting single-tone signals in the
2.4GHz frequency range to signal the leaked information
bits.

To exemplify the general process of the attacks, Figure 1
presents the above-mentioned scenario.

As shown in the figure, the sender, which operates from
the isolated guest network, has collected some sensitive
data (for example, a personal health-related sensor reading)
and would like to leak this data. Overt communication
between the isolated and public networks is blocked, so
the data is leaked through a covert channel. The data is
decoded in an infected computer in the public host network
(the receiver), and from there the data is leaked to the
Internet.

We evaluated the impact of our attacks by performing
them on various routers and Wi-Fi enabled devices. Also,
for the CRCC attack, evaluation included performing the
CRCC attack with different packet types; And for the Wi-Fi
micro-jamming attack, the evaluation included measuring

Guest
Network

Host
Network

Sender Receiver

Router

Figure 1: A covert channel between a host and guest network: overt
traffic is blocked, but the covert channel is not.

the optimal configuration for the attack (like the implant’s
transmission power, the micro-jamming frequency, and
more) and the maximal transmission rate.

On the defensive side, we present a machine-learning
(ML) and deep-learning (DL) based defense mechanism to
detect the attacks. We use semi-supervised models to per-
form novelty detection. This kind of model assumes that
the training data is benign and tries to predict whether the
test data is indicative of malicious activity. Such models
were selected, based on the assumption that it would be
easy to obtain benign data that does not include this type
of attack. The defense mechanism evaluation included per-
forming the attacks in a noisy and noise-free environment.
The noise, also referred in this paper as cover traffic, in-
cluded packets that were not related to the attack but can
often be found in a standard network environment (like
ARP packets, DNS packets, TCP packets, and more). The
evaluation metrics used for the models were F1-score and
AUC.

As mentioned above, the attacks presented in this paper
assume that malware is installed on at least one computer
in each network. Also, the Wi-Fi micro-jamming attack re-
lies on a hardware implant that can transmit unmodulated
signals in the 2.4GHz frequency range. These limitations
will make it hard for an inexperienced attacker or an at-
tacker without access to the isolated network to perform
this attack (see Section 4.1 for more details). But when
considering highly skilled attackers, it is very important to
be aware of the limitations of software-based network isola-
tion, given both the adoption of inexpensive and relatively
insecure IoT devices and organizations’ increasing need for
secure IT infrastructure.

In this paper, we make the following contributions:

• We characterize two network timing covert chan-
nels, which enable data leakage between a public
host network and an isolated guest network. The
router, which hosts both networks, is used as a shared
medium that enables the covert channels.

2

• We implemented a defense mechanism that can be
placed between a network’s router and its clients. The
defense uses ML/DL techniques to detect information
leaks from the network timing covert channels. The
ML-based defense mechanism can be enabled without
training on data that contains malicious behavior.

• We publish our data and code as a benefit to the
research community [7]. The code includes the im-
plementation for both the attacks and the defense
mechanism.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the attacks’ implementation, evaluation
methods, and results. Next, in Section 3 we describe the
defense mechanism’s implementation, evaluation methods,
and results. Finally, we conclude in Section 4 with a discus-
sion that includes a comparison between the attacks, the
performance of our proposed defense mechanism, attacks
limitations, defense limitations, related work and directions
for future research.

1.1. Network Covert Timing Channels
Covert channels, first defined in 1973 by Lampson in [8],

are communication channels that exist between two parties,
a sender and a receiver, and can be used when overt commu-
nication between the parties is prohibited due to privilege
separation, sandboxing, or other architectural boundaries.
Zander et al. [9] defined two main types of covert channels:
direct and indirect. A direct covert channel describes the
case in which the two parties operate an innocuous-looking
overt communication channel that contains a hidden covert
channel. An indirect covert channel describes the case in
which an overt communication channel between the parties
does not exist. In this case, the two parties establish a
covert channel using shared hardware.

Timing-based covert channels are a type of indirect
covert channel. In this channel, communication is per-
formed by measuring patterns in time, and more specifi-
cally delay patterns caused by interfering with the system
resources. Maurice et al. have successfully established an
indirect covert channel between virtual machines running
on different cores [10]. They exploited the inclusive feature
of caches, which is a shared resource among the machines,
allowing a core to evict lines in the private first level cache
of another core. By measuring access times to the cache,
the receiver notices which bit was received.

In a network traffic context, network timing covert chan-
nels transfer information using packet arrival patterns and
not by the actual content of the packet. Tian et al. [11]
described two construction technologies of network timing
covert channels: communication content covert channels
and transmission network covert channels. Communication
content covert channels encode the information into time
behavior of the network traffic, which is basically an in-
formation steganography technique. Transmission network
covert channels change the structure of the transmission

network (for example, adding proxy servers to the net-
work) to send information. Tian et al. also determines
three metrices of a covert channel quality: message and
identity concealment, channel robustness, and transmission
efficiency (e.g., transmission rate).

An example of a communication content covert channel
can be found in Maurice et al. [12] work that showed a
timing channel that relies on measuring packet arrival times
or inter-packet delays. In this channel, the sender sends a
packet to send the bit ’1’ and sends nothing to send the
bit ’0’. The packets are sent at constant intervals so the
receiver can synchronize with the sender’s transmissions
and be prepared to receive (or not receive) a packet at
predetermined intervals to decode the secret information.
The timing channel they presented uses a direct channel
to convey information since it is performed on an overt
communication channel. El-Atawy et al. [13] presented
another content communication direct covert channel, a
sorting channel. In this channel, the sender sends a group
of packets in a specific order to the receiver. Each packet
permutation is equivalent to a unique piece of information.
Using a pre-shared code, the receiver decodes the secret
information by observing the packets’ permutation.

Wustrow et al. [14] presented a transmission network
covert channel which used the end-to-middle proxy tech-
nique. This technique is meant to overcome IP blocking. In
an end-to-end proxy, users access remote servers through
an accessible proxy server. This makes the proxy server
a single point of failure which can be configured to block
certain servers’ IP addresses to censor their content. Using
the end-to-middle proxy technique, a user can communicate
with a friendly ISP that will transfer all of the user’s traffic
to an unblocked server unless the traffic includes a special
stenographic tag. From the censor’s point of view, the user
is still unable to access the blocked site.

In this research, we examine indirect timing covert
channels, which are achieved by having the sender selec-
tively exhaust the finite hardware resources available on
the router. Then, the receiver measures the effect of this
varying resource consumption on the router’s performance,
specifically the router’s response time to the receiver’s
requests (e.g., communication content covert channels).
Blocking this form of covert channel, which exhausts hard-
ware resources, is more difficult than network timing covert
channels, since it may require architectural changes to the
router.

1.2. Network Covert Timing Channels Detection
As Tian et al. [11] shows, there are several methods

to detect network covert timing channels. Overall, the
methods can be considered as anomaly detection methods.
Anomalies are rare data instances in which one or more
of the features has an abnormal value compared to most
data instances. Anomaly detection is aimed at identifying
anomalies within the data.

Network covert channel detection heavily relies on con-
stant monitoring of the network. The monitoring process

3

parameterizes the network’s characteristics, which are then
analyzed by a network intrusion system. This helps the
system create a model of the network’s normal behavior
which can be used to predict anomalies when they occur.
Over time, the system obtains new information which is
used to train the model and improves its ability to detect
such anomalies.

For communication content channels, one can use statis-
tical methods to capture the shape, regularity and random-
ness of the network traffic data or use ML/DL methods
that specialize in anomaly detection. To perform statistical-
based anomaly detection, the network traffic is recorded
and a profile representing its statistical behavior is created.
The profile includes parameters like traffic rate, number
of different IP addresses, connection rate, and more. To
detect an anomaly, one must build a profile of regular net-
work traffic, which is a recording of prior network traffic
that the user trusts; this profile is then compared to the
current real-time network traffic profile. This comparison
enables alerts to be raised when the examined network
traffic profile contains an abnormal network event. To per-
form ML/DL-based anomaly detection, the network traffic
is recorded, and features are extracted. The features are
later used to train a ML/DL model, which will be used
for anomaly detection. Clustering and outlier detection
are combined in one method which uses ML/DL models to
identify anomalies. In this approach, unsupervised ML/DL
algorithms gather similar data instances together to create
clusters. The algorithm determines the similarity between
data instances using a distance measure in the feature
space. Data instances that do not belong to any cluster
are called outliers, and such outliers are the anomalies we
wish to detect.

For transmission network channels, the detector can
embed a watermark to each packet in the network traffic
for easier tracing of the traffic’s path. Another method
involves unique identification of the traffic’s data using
regular expressions. This can allow easy identification of
packets that include a special tag like in the middle-to-end
proxy technique. Finally, ML/DL can be used to identify
communication coming from the proxy server.

In this research, we use semi-supervised ML/DL mod-
els to perform novelty detection. As Miljković [15] ex-
plained, novelty detection is an anomaly detection process
where the ML model learns the system’s normal behavior.
Later, based on this knowledge, the model should be able
to predict any abnormalities. This is considered a semi-
supervised model because the training data is guaranteed
not to include any abnormalities. This contrasts with the
unsupervised case mentioned above, in which the training
data may contain anomalies.

2. Covert Channel Attacks

As Yi et al. [16] describes, the two main elements in
the router responsible for packet delivery are the software-
based routing plane and the hardware-based forwarding

plane. When the router receives a packet, the software-
based routing plane calculates the forwarding table (FIB).
Then, the packets are delivered through the forwarding
plane, following the rules of the FIB. The forwarding plane
is usually implemented in hardware operates at the nanosec-
ond time scale. The router’s routing plane is implemented
in software executed by a traditional CPU and operates at
the millisecond or second timescales.

Guided by this explanation, we attempt to create covert
channels that are not operating on the faster forwarding
plane but rather on the slower routing plane. We do so by
generating traffic which the router does not simply forward,
but rather must respond to in software. While devices on
the host network may not have a wide variety of ways of
interacting with the router’s control plane, we claim that
even the most secure router must expose a minimal set
of router control plane functions to the guest network to
function properly, notably the Dynamic Host Configuration
Protocol (DHCP), Address Resolution Protocol (ARP), and
Domain Name System (DNS).

2.1. Attacks Prerequisites
As explained in Section 1, the attacks presented in this

paper aim to create a covert channel between an isolated
("guest") network and an Internet-connected ("host") net-
work, which are hosted by the same router. The computer
in the guest network which sends the sensitive data (the
"sender") causes delays in the router’s response times ac-
cording to the leaked data bits. The computer in the host
network (the "receiver") records and analyzes the router’s
response times to decode the data.

These attacks assume that both computers, in the guest
and host networks, are infected by malware that operates
the attacks. Moreover, in the Wi-Fi micro-jamming attack,
it’s also assumed a malicious implant is installed in the
sender’s machine. These requirements are further discussed
in Section 4.1.

Since the attacks rely on deliberately delaying the
router’s response time, they should have the same trans-
mission window length. We’ll explain the meaning of this
term with an example. If the sender wishes to send the bits
’101’ to the receiver, it must delay the router’s responses
for some limited time, then stop the disruptions, and after
that continue the disruption. To do that, the sender can
disturb the router for one second, stop for one second, and
finally continue the disruption for another one second. The
receiver should know that the sender works in one-second
intervals to decode the message correctly. Those intervals
are the transmission window length. Note that the trans-
mission window length determines the leaked bitrate. In
the example, the sender uses a one second transmission
window, so the leaked bit rate is one bit per second.

2.2. Cross-Router Covert Channel
The cross-router covert channel (CRCC) attack exploits

the fact that routers have limited resources. Given this

4

limitation, a router that supports different logically sep-
arated networks, could be overflowed with routing plane
packets from one network and therefore perform poorly
(with delayed responses) for another network. The delays
in the response time are measurable, and therefore can be
used as a network covert timing channel.

2.2.1. Attack theoretical basis
A denial-of-service (DoS) attack is performed by ma-

licious actors that wish to degrade the performance of
network services. The attack is done by transmitting a
large amount of data to the network server to exhaust its
limited bandwidth or to interrupt the router’s ability to for-
ward packets efficiently. According to Murillo Piedrahita et
al. [17], the data sent to the server/router can be random
data or carefully crafted data which resemble legitimate
traffic in large volume.

In our case, the CRCC attack uses a DoS attack which
overflows the network’s router to make it underperform.
We assume that the router supports two logically separated
networks: a public host network (connected to the Internet)
and an isolated guest network. The attacker wants to leak
sensitive information from the guest network to the host
network (see Figure 1). By inflicting intentional delays in
the router’s responses, the sender of the CRCC attack can
signal information to the receiver, thus creating a network
covert timing channel.

2.2.2. Attack process
The attack is performed as follows. First, as mentioned

earlier, we assume that the attacker installed malware in
the sender machine (that is part of the isolated network)
which collected the sensitive information prior to the attack
and can leak the information using the CRCC attack. It is
also assumed that the receiver (that is part of the public
network) is infected with malware that can receive infor-
mation from a CRCC sender. The attack will start at a
predetermined time, which is known to both the sender and
the receiver. Before the attack starts, the receiver sends
a few packets to the router (without loss of generality, we
assume the packets are ARP requests), measures the re-
sponse times, and stores the average. This measurement
will be referred to as the normal response time. Then,
the attack begins. Take, for example, a case in which
the sender sends DHCP discover packets, and the leaked
information transmission rate is one bit per second (e.g.,
the transmission window length is one second). To leak
sensitive information, the sender will operate as follows.
To send the ’0’ bit, it does not transmit anything for a
period of one second. To send the ’1’ bit, it transmits a
large amount of DHCP discover packets to the router at
a high transmission rate. During this time, the receiver
continuously sends ARP requests and measures the router’s
response time.

Assuming the sender and receiver shared the same trans-
mission window length, the receiver can collect the mea-
sured response times and divide them by one second in-

tervals. For each interval, if the average response time is
close to the normal response time, the slot represents the
’0’ bit. If the average response time is much higher than
the normal response time, the slot represents the ’1’ bit.

2.2.3. Methodology
Initial results about the impact of the CRCC attack

we proposed were presented at the 2019 WOOT workshop
by Ovadya et al. [5]. We attempted to attack as many
router models from multiple vendors and at price points
as possible. The goal was to test which of the routers are
vulnerable to the CRCC attack. Table 1 shows the tested
router models.

To prepare each router for experimentation, we first
inspected its online documentation, both on the official ven-
dor website and on the OpenWRT website, which contains
hardware information for many router models. Next, we
performed a factory reset on the router and updated it with
the most recent firmware version we were able to find on
the vendor’s website. Then, we used the router’s web-based
management interface to enable the router’s host and guest
isolation feature and connected two different computers re-
spectively to the router’s host and guest networks. Finally,
we checked that the isolation feature worked in principle
by verifying that naive direct connections between the two
computers were blocked by the router.

To determine whether a specific router is vulnerable to
the CRCC attack, we applied a Student’s Independent two-
sample t-test on the outputs of the receiver; if the test can
differentiate between two sets of 1,000 timings, obtained
either with or without the sender, with a significance of
p < 0.05, the router under test is vulnerable to the CRCC
attack. Many cross-router covert channels, which differed
in terms of the type of packets used, were tested on each
router. The tested packet types included ARP, SSH, CSRF,
ICMP, and DHCP packets.

In addition to observing the attack’s effect on different
kinds of routers, we addressed the covert channels based
on three criteria. The first and most significant criterion is
the channel’s pervasiveness: how widespread is the channel
among the various types of hardware and how difficult
would it be to block this channel using a simple software
upgrade. The next criterion is the channel’s rate: how
much data can be transferred over this channel per unit
of time within a reasonable data transmission rate. The
last criterion is the channel’s degree of covertness: how
similar is traffic sent using this channel to regular traffic
exchanged by the router and how hard is this channel to
detect using forensic tools which examine log files and other
external artifacts. These criteria match Tian et al.’s [11]
covert channel quality metrices.

The experimental setup for the CRCC attack consisted
of two Raspberry PIs (RPIs) which acted as the sender
and receiver, a router, and a test harness computer, as
shown in Figure 2. The two RPIs (model: RPI 3 Model
B, revision 1.2) were connected to the router via Wi-Fi
in different logically separated networks. Both RPIs were

5

Identifier Vendor Model CPU type Core
count

CPU
speed

Year
intro-
duced

Price

TP1 TP-Link Archer C3200 Broadcom BCM4709A0 2 1 GHz 2015 $218
TP2 TP-Link Archer C2 MediaTek MT7620A 1 580 MHz 2017 $63
DL1 D-Link DIR-882 MediaTek MT7621A 1 880 MHz 2017 $154
DL2 D-Link DIR-825AC Realtek RTL8197DN 1 660 MHz 2015 $50
ED1 Edimax RG21S MediaTek MT7621AT 2 880 MHz 2017 $209
ED2 Edimax BR-6208AC Realtek RTL8881AQ 1 520 MHz 2014 $47
LS1 Linksys EA7500-eu Qualcomm IPQ8064 2 1.4 GHz 2016 $185

Table 1: Evaluated Routers in the CRCC attack [5]

controlled remotely by the test harness computer, which
was connected to them with an Ethernet cable. Using
the test harness computer, we logged onto the RPIs using
an SSH session and operated the Python attack scripts
(receiver and sender). Both scripts use the Scapy library
for packet manipulation and tcpdump for network traffic
recording.

Guest
Network

Host
Network

wired connectionwired connection

Sender Receiver

Figure 2: Cross-Router Covert-Channel experimental setup.

The receiver script could send packets at a specified slow
rate, record the network traffic, and analyze the router’s
response times. The sender script could send packets at
a high transmission rate in a structured manner to leak
the sensitive information to the receiver. Both scripts
needed to be started manually to enable their simultaneous
execution. After both scripts were done transmitting, the
receiver script decoded the leaked information and printed
the leaked information and the bit error rate (BER).

2.2.4. Attack Results
We found that all the routers examined were vulnerable

to the CRCC attack, but not all routers are vulnerable
to every covert channel. Table 2 summarizes the assessed
covert channels. The ARP-SSH is the worst covert channel
compared to other types of channels since it only allowed
one-way communication on two routers (out of seven).
The best covert channel is the DHCP-ARP channel that
successfully operates on all the routers and allows two-way
communication in five out of the seven tested routers. Also,

we tested the covert channels’ pervasiveness, rate, and
covertness. Table 3 summarizes the results.

The SSH-ARP channel is one of the most covert of the
timing-based channels we identified, as it generates no log-
file entries since the SSH connection establishment never
concludes. We still consider it less pervasive than the other
timing-based covert channels due to the limited number
of routers with default support for the SSH protocol. The
two ARP-based channels, ARP-CSRF and ARP-ARP, are
part of the most pervasive channels in our opinion, since
virtually all routers expose some sort of web server on their
host network side, and all routers support the ARP protocol.
The CSRF-ARP channel is slightly less stealthy since the
thousands of web requests per second may constitute an
irregular access pattern which can be detected by external
intrusion detection systems. Both ARP-based channels
are limited in their rate because ARP packets are easily
handled by the router’s CPU and generate only a minimal
resource footprint. The ICMP-ICMP channel is both more
covert and stealthier than the ARP-ARP channel, but its
pervasiveness is limited by the fact that not all routers
expose ICMP on the guest network side. Finally, the
DHCP-ARP channel is very pervasive and can be operated
in high rate but is not so covert since lots of DHCP requests
can be considered irregular network pattern which can be
detected by a network intrusion system (similarly to the
ARP-CSRF channel).

The vulnerability reports for the various covert chan-
nels and router models were granted the following CVE
IDs: CVE-2019-13263, CVE-2019-13264, CVE-2019-13265,
CVE-2019-13266, CVE-2019-13267, CVE-2019-13268, CVE-
2019-13269, CVE-2019-13270, and CVE-2019-13271. We
note that the workshop paper also examined direct covert
channels, which are not within the scope of this article.

2.3. Wi-Fi Micro-jamming
The Wi-Fi micro-jamming attack shares the CRCC

attack’s concepts of degrading the router’s performance
and leaking data through response time measurement, but
it influences the router in a different way. The disturbance
to the router is caused by transmitting a weak single-
tone signal in the Wi-Fi frequency band (2.4GHz). This
signal lets the attacker exploit the CSMA/CA mechanism

6

Channel Type TP1 TP2 DL1 DL2 ED1 ED2 LS1
ARP-SSH Timing G ⇒ H G ⇒ H – – – – –
ARP-ARP Timing G ⇔ H G ⇔ H – G ⇔ H G ⇐ H G ⇔ H G ⇔ H
ARP-CSRF Timing G ⇔ H G ⇒ H G ⇔ H G ⇒ H G ⇔ H G ⇒ H G ⇒ H
ICMP-ICMP Timing – – – – G ⇔ H – G ⇔ H
DHCP-ARP Timing G ⇔ H G ⇔ H G ⇔ H G ⇔ H G ⇒ H G ⇐ H G ⇔ H

Table 2: Covert channels supported by different routers, taken from [5]. The arrow direction describes the possible flow of the data between
the guest (G) and host (H) networks, while the column headings discuss different router models.

Channel Pervasiveness Rate Covertness
ARP-SSH ++ ++ +
ARP-ARP +++ + +++
ARP-CSRF +++ + ++
ICMP-ICMP ++ ++ ++
DHCP-ARP +++ ++ +

Table 3: Quality of different covert channels [5]

employed by the 802.11 protocol, to increase the amount
of time it takes the router to respond.

2.3.1. CSMA protocols and Wi-Fi
As defined by Kurose and Ross in [18], carrier-sense mul-

tiple access (CSMA) protocols employ random algorithms
in order to access the data link layer when a number of
devices share the same medium to communicate. Common
examples of CSMA protocols are the wired IEEE 802.3
Ethernet protocol and the wireless IEEE 802.11 Wi-Fi
protocol.

According to the collision avoidance (CA) variant of the
CSMA protocol specification, before a station transmits, it
first goes through a carrier sense phase, where it senses the
status of the medium. When the medium is sensed as busy,
the station will wait for a certain amount of time (which is
called distributed coordination function inter-frame space,
or DIFS, in the Wi-Fi protocol) until the channel becomes
free again before transmitting. This precaution by itself
does not guarantee collision-free access to the medium due
to propagation delays and the hidden terminal problem [18].
To ensure that a transmitted Wi-Fi packet was received
without errors, the receiving station sends an acknowledg-
ment frame (ACK) every time a packet is received without
errors. If the transmitting station does not receive an ACK
for a transmitted frame, it will attempt to retransmit it
several times, until it gets acknowledged by the receiving
station. If, after several attempts, the sending physical
layers do not receive an ACK, it will discard the packet
and alert the higher layer protocols1.

The Wi-Fi protocol provides two different methods of
detecting whether a channel is busy or clear. As specified
in Subsection 17.3.10.6 of the 2016 version of the Wi-Fi

1An optional RTS/CTS access mode also exists in Wi-Fi protocol,
but it is not commonly deployed and is outside of the scope of this
paper.

standard [19], the Wi-Fi station performs both a carrier
sense-based clear channel assessment (CS/CCA), in which
it looks for Wi-Fi traffic on the channel, and a generic
energy-detection-based assessment (CCA-ED), in which it
looks for any kind of energy on the Wi-Fi band.

2.3.2. Attack theoretical basis
Jamming is a denial-of-service (DoS) attack that takes

advantage of a shared medium in electronic communication.
Jamming is performed by transmitting signals that interfere
with the ability to communicate on the medium.

Stations communicating using the 802.11 protocol will
wait until the medium is free for the DIFS time period to
transmit their pending frames. Therefore, if a transmitter
continuously transmits on a channel in one of the 802.11
frequency bands, none of the devices communicating on
the channel will be able to transmit. Such jamming will
result in a denial of service to any wireless networks using
that channel, usually causing the devices communicating
on the channel to indicate an error condition and ultimately
abandon the channel altogether.

Our approach, initially presented at 2018 WOOT work-
shop by Ogen et al. [6], is to use micro-jamming to cause
transmission delays in the frames transmitted on a wireless
network. In contrast to traditional jamming techniques,
which result in various degrees of denial of service, micro-
jamming does not aim to perform a DoS attack. Instead, in
a micro-jamming approach, jamming is started and stopped
frequently. Because communication is not entirely blocked,
transmitted frames may be delayed or re-transmitted, but
they are rarely discarded. As a result, this method’s impact
on the usability and throughput of the overall channel is
minimized.

An example of micro-jamming is presented in Figure 3,
which presents actual recordings of network traffic between
a laptop and a wireless router captured using a Tektronix
RSA604 real-time signal analyzer. A simple DNS trans-
action carried out over Wi-Fi is presented at the top of
Figure 3. The transaction begins when a higher layer of
the protocol stack creates a packet (in this case, a DNS
query) and asks the Wi-Fi physical layer to transmit it.
The Wi-Fi controller on the laptop performs a CCA check,
which is immediately successful in this case, and transmits
the packet over the air, as indicated by the first energy
band on the left. Very shortly after this event, the Wi-Fi
physical layer on the router successfully receives the packet

7

Figure 3: Wi-Fi micro-jamming effect [6]. Top: A DNS query and
response without jamming. Middle: A DNS query delayed by

micro-jamming. Bottom: A DNS response delayed by
micro-jamming.

and immediately sends an ACK packet back to the laptop.
In the figure this can be seen as a more powerful energy
band which immediately follows the laptop’s packet. Then,
the router performs the operations required to satisfy the
DNS query by the upper protocol level, either by handling
it locally or by sending it to another machine. After the
DNS response is ready, it is now the router’s turn to per-
form CCA, after which it sends a DNS response back to
the laptop. This DNS response is indicated in the figure
as a higher-energy band. Finally, the laptop receives this
DNS response and immediately acknowledges it.

The middle part of Figure 3 presents an actual micro-
jamming scenario in which the higher-level protocol layers
request the Wi-Fi stack to transmit a DNS query, while the
shared medium is experiencing the effect of micro-jamming
(this is seen in the figure as a thin solid line). As soon as
the micro-jamming stops, the laptop’s physical layer waits
for an additional short period of time (DIFS) and then
immediately transmits the DNS query it stored; it then

behaves normally, like the upper part of Figure 3 which
was explained above. It is important to note that in this
case the application layer on the laptop will detect a longer
round-trip delay before receiving the DNS response, since
the DNS query was not immediately sent to the shared
medium.

The bottom part of Figure 3 shows a third scenario in
which the laptop was able to transmit the DNS query to
the router as soon as it arrived from the higher protocol
layers, but the router experienced micro-jamming as it was
preparing to send its answer to the laptop. As seen in the
figure, the router delays sending its DNS response until the
jamming stops. This can be seen in the figure as the long
solid line separating the DNS request (and associated ACK)
from the DNS response (again with associated ACK).

2.3.3. Attack process
As shown in Figure 4, the Wi-Fi micro-jamming attack

model consists of a malicious implant, which serves as the
data sender; an attacker, which serves as the receiver in a
remote Internet-connected location; and a victim device,
which browses a website with some attacker-controlled
content using a Wi-Fi access point.

Figure 5 presents a high-level diagram of the implant.
The implant contains two components: the analog modula-
tion component and the radio frequency (RF) transmission
component. In the analog modulation component, the
data to be exfiltrated is first modulated using pulse ampli-
tude modulation or PAM at frequency fJ to create short
breaks in the jamming signal which allow some traffic to
go through. Then, in the RF transmission component, the
waveform is then used to modulate a sine wave at a central
frequency of one of the Wi-Fi channels that is ready for
transmission. Before the transmission, a duty cycle DJ is
determined which is the proportion of time in each of the
sine wave’s cycles in which jamming is performed. Finally,
the resulted waveform is amplified and transmitted over
the air.

On the receiver side, the target device is induced to
load attacker-controlled web content which includes a small
amount of JavaScript code. This code causes the target
device to issue DNS requests to non-existent domains. The
code then measures the time it takes for an error response
to arrive from the DNS server. In practice, this is done by
creating an HTML image element and setting its source
to an image hosted on an invalid domain. We chose this
method of probing the network, since DNS requests require
only one UDP packet per request and one packet per error
response, in contrast to common web traffic which is car-
ried over TCP and includes an additional round trip for
connection setup.

Similarly to a CRCC attack, when the malicious implant
wants to send a logical ’1’ to the victim device, it activates
micro-jamming on the Wi-Fi channel, causing an increase in
the round-trip time (RTT) that is measurable in JavaScript.

8

Jamming Wi-Fi

Malicious Implant
(Sender)

Victim Device Wireless Router Internet Attacker
(Receiver)

Figure 4: The general Wi-Fi Micro-jamming attack model.

X X Micro-jam Signal
Transmission

Leaked Data
(PN7 Sequence, NRZ)

PAM modulation:
Frequency = 𝑓𝐽

2.4GHz single-tone
sine wave

Duty cycle = 𝐷𝐽

Analog Modulation
Component

RF Transmission
Component

Figure 5: Wi-Fi Micro-jamming implant.

2.3.4. Methodology
Our initial results, presented by Ogen et al. [6] in the

WOOT workshop, demonstrated the significant impact of
this covert channel on different devices. We examined
whether the Wi-Fi micro-jamming attack causes response
time delays that can be measured and used to reliably leak
data. We also performed the attack with different values
for its parameters (such as the data rate, micro-jamming
frequency, duty cycle, range, and transmission power) to
find the attack’s optimal configuration settings.

Figure 6 describes the experimental setup used. An At-
mel ATMEGA256RFR2 Xplained Pro board and a Keysight
33622A 120 MHz waveform generator were used as the at-
tack’s malicious implant [20]. The waveform generator can
create various signals with different modulations and con-
figurations. The ATMEGA256RFR2 microcontroller can
generate raw unmodulated signals in the 2.4 GHz frequency
band at a variety of frequencies and output levels.

We used the waveform generator’s pre-configured PN7
pseudo-random sequence as the data to be leaked using
the Wi-Fi micro-jamming covert channel. This data was
modulated by PAM modulation with frequency fJ and was
partially transmitted to the ATMEGA256RFR2 microcon-
troller’s external I/O pins according to the configured duty
cycle DJ . A simple program compiled for the Atmel micro-

controller allowed us to turn the jamming signal on and off
according to the data coming from the waveform generator.
In this setup the waveform generator acted as the ana-
log modulation component and the Atmel microcontroller
acted as the RF transmission component.

For the receiver, a wide variety of different devices were
used, including phones, laptops, tablets, and even an IoT
node. A TP-Link WR940N 450Mbps wireless N router
served as the victim Wi-Fi access point, and a local server
functioned as the local DNS server of the LAN managed
by the TP-Link router. The server hosted a local webpage
which contained malicious JavaScript code that periodically
sent DNS requests to non-existent URLs and measured the
RTT of the DNS message. When the channel was interfered
with, the RTT was comparatively higher than when there
was no interference.

2.3.5. Attack Results
We successfully performed the Wi-Fi micro-jamming

attack with several different victim devices, thus concluding
that all Wi-Fi capable devices are susceptible to this kind of
attack. Moreover, we showed that the power requirements
are very low, with the active transmitter consuming less
than 20 microwatts for transmission - power levels which are
low enough to be utilized by miniature battery-operated

9

Wired
connection

Malicious implant
(“Sender”)

Malicious web server

2.462GHz Wi-Fi
(channel 11)

Wired connection

Victim device
(“Receiver”)

Waveform
generator

ATMEL
microcontroller

Figure 6: Wi-Fi micro-jamming experimental setup.

implants. Also, the analysis of the BER of the leaked
information as a function of the micro-jamming frequency
and duty cycle is shown in Figure 7.

Figure 7: Bit error rate (BER) as a function of micro-jamming
frequency and duty cycle (DC).

Figure 7 shows that in terms of the BER, the optimal
duty cycle is in the range of 80-88% and in terms of the
micro-jamming frequency, the optimal frequency is in the
range of 100-200Hz. We’ve also measured the Wi-Fi’s data
throughput as a function of duty cycle. The results can be
seen in Figure 8. It can be seen in the figure, that 80% duty
cycle decreases the Wi-Fi’s throughput from 50Mbps to
30Mbps. Thus, the attacker should consider that operating
the Wi-Fi micro-jamming attack with its optimal values
can be noticeable.

Finally, we found that the receiver can be located over
15 meters away from the sender and can receive data at a
rate of 40 bits per second (bps). The workshop paper also
examined another Wi-Fi micro-jamming method that relies
on the backscatter phenomenon; however, this method is

Figure 8: Wi-Fi throughput as a function of micro-jamming duty
cycle (DC).

not within the scope of the current paper.

3. Covert Channel Defense

This section describes the approach we took to detect
the attacks described in Section 2. As explained earlier,
both attacks can leak information between two logically
separated networks. Based on this, we assumed that the
defense mechanism should be able to see all the network
traffic, as the router sees it, to identify cross-network leak-
age. We also assumed that the attacks represent a low
percentage of the total network traffic, and therefore we
considered novelty detection models. This type of models
tries to identify anomalies by learning the normal behavior
of the system, and this provides a good fit for the problem
at hand.

10

3.1. Defense Motivation
The attacks presented in this paper break logical net-

work isolation. This isolation is crucial to organizations’
efforts to avoid the leakage of sensitive information. Both
attacks are difficult to detect for two main reasons. First,
in contrast to malware or fuzzing attacks, the attacks pre-
sented here involve sending legitimate packets which are
used for basic network management and are not uniquely
associated with an attack scenario. Second, the attacks,
by their very nature, change the way the network behaves.
Therefore, dissecting individual packets will not help in
attack detection.

We were able to overcome these difficulties by relying
on an ML/DL-based defense mechanism capable of novelty
detection. Relying on novelty detection algorithms makes
this defense tool more easily integrable, because the user
does not have to train the tool with data containing the
actual attacks. In the event of an anomaly, an alert will be
raised in real time, and the machines associated with the
anomalies can be examined by the network administrator.

3.2. Defense theoretical basis
As discussed in Section 1.2, Tian et al. [11] noted that

network covert timing channel which are communication
content channels can be detected using ML/DL models
that use network traffic characteristics to learn the normal
behavior of the network. Those models can later identify
anomalies in the network traffic, which can indicate the
presence of a covert channel. Assuming that recordings
of the covert channel communication are non-existent, the
chosen models should be ones that don’t rely on labeled
malicious data to make predictions. That’s why it is prefer-
able to use unsupervised or semi-supervised models that
use clustering techniques to identify outliers. The general
process of developing such detection tools involves data
collection, feature extraction, model training, and model
testing.

In our work, the detector was developed following the
steps described in Figure 9. As seen in the figure, we im-
plemented the attacks to create a data collection platform.
After that we extracted features from the data. Then, we
trained our models with semi-supervised novelty detection
models. Finally, we tested the models in both noisy and
noise-free environments. The noise-free environment was
free from any traffic unrelated to the computers perform-
ing the attack. The noisy environment included a great
deal of cover traffic. Cover traffic is network traffic that is
unrelated to the attack, and its sole purpose is to add noise
in the form of common packets sent in computer networks
to simulate standard network activity. Each step described
here is further elaborated in the following sections.

3.3. Data Collection
To develop an ML-based anomaly detector, we needed

to collect data, and to accomplish this, we created se-
tups similar to those described in Sections 2.2.3 and 2.3.4.

Attack implementation

Data collection

Feature extraction

Train a novelty detection model

Test on lab & simulated environments

Figure 9: The general defense process employed to develop the
defense mechanism.

The setup for the CRCC attack consisted of one specific
router (model: D-Link DIR-825ACG1), and the setup for
the micro-jamming attack consisted of one specific victim
device (Dell Inspiron 5559 laptop). The attacks were per-
formed while the network traffic was recorded. We collected
two sets of data: data without cover traffic and data with
cover traffic.

The cover traffic was generated by two computers which
were connected via the virtual network computing (VNC)
protocol. This protocol lets the computer that hosts the
VNC server see and interact with the desktop window of the
computer that serves as the VNC client. To produce cover
traffic, the VNC client executed a script that opened and
closed a calculator or notepad program, started and then
quit the Firefox browser, and transferred a large file to the
VNC client using the file transfer protocol (FTP). While all
the above was taking place, the VNC client played a short
video in an infinite loop. These actions generated a heavy
stream of TCP communication due to the rapid changes in
the VNC client’s screen (associated with the video and the
various opening and closing programs) and the file transfer.
It is important to note that the sender’s packets in the
CRCC attack were vastly outnumbered by the cover traffic
packets, making them relatively rare samples in the general
network traffic, as it would probably be in a real scenario.

For each attack and dataset, we collected 90 record-
ings of benign traffic (without attacks) and 10 recordings
of malicious traffic, each of which was several minutes
long. For the CRCC attack recordings, we randomly chose
the duration (60-300 seconds), type of packets to be sent
(ARP/DHCP), and the transmission rate (150-600 pack-
ets per second). The CRCC attack’s leaked data bit rate
was 1bps. For the Wi-Fi micro-jamming attack, we used
fj = 500Hz, Dj = 88%, DNS transmission rate of 120
packets per second, and a leaked data bit rate of 10bps.
These are the optimal configuration values for error-free
transmission, as identified by Ogen et al. [6]. We did
not randomize the Wi-Fi micro-jamming configurations, as

11

described in more detail in Section 4.

3.4. Feature Extraction
The next step was feature extraction. First, we note

that both attacks are similar in nature: both are network
timing covert channel attacks that use delayed response
times to leak sensitive data from an isolated network to
a public network (which is connected to the Internet).
Because of this, we extracted the same features for both
attacks.

As mentioned earlier, to observe the attacks, the net-
work’s behavior must be observed rather than the packets
themselves. Therefore, we decided to extract features from
a flow of packets rather than from individual packets. A
flow, according to Davis and Clark [21], is an “unidirec-
tional sequence of packets sharing a common key such
as the same source address and port, and destination ad-
dress and port”. The flow features we extracted can be
categorized into two types: general flow features and re-
sponse time features. We consider general flow features
as common characteristics that are usually measured in
a packet context, such as the flow duration and number
of packets. Response time features are various statistical
measurements of the router’s response time to each of its
clients separately (i.e., the router’s response time measure-
ment for each flow); these features are important for the
detection of the proposed attacks, because the attacks rely
on careful analysis of the delay in response times. The
response time features, which took the response time of
every client packet into account, required a relatively high
processing time to extract, but were critical to the success
of our detection mechanism. Table 4 summarizes the flow
features.

General Flow
Features

Response Time
Features

Flow duration Response time median
Number of packets Response time variance
Number of bytes Response time average
Transmission rate

(median and variance) Min response time

Packet length (median
and variance) Max response time

Flow to router
\broadcast (bool)

Table 4: The full list of features used in CRCC and Wi-Fi
microjamming detection.

As described in Section 3.3, we collected 90 benign
recordings and 10 malicious recordings of each attack; each
recording lasted a couple of minutes. As said earlier, both
attacks use delayed response times to send the sensitive
data. The data transmission rate was 1bps for CRCC
attack and 10bps for the Wi-Fi micro-jamming attack.
This means that the response time changes that encode the
data for the CRCC and Wi-Fi micro-jamming attack can
be best observed when analyzed in one second intervals and

0.1 second intervals, respectively. Therefore, we divided
the recording files of the CRCC attack into one-second files
and of the Wi-Fi micro-jamming attack into 0.1 second
files before extracting the features.

We define mini-flow as a small portion of the original
flow. In other words, each flow of a one-second recording
file is a mini-flow. Concatenating all of the mini-flows
chronologically will result in the original flow. Note that a
mini-flow is not necessarily a one second or 0.1 second flow.
It is a small portion of the flow that was created because
we divided the recording files into smaller files.

To extract features from the mini-flows, we took each of
the original recordings (before dividing them to one second
recordings) and assigned a unique ID to each flow found in
the recording. Then, after dividing the flows, we extracted
features from each mini-flow while the mini-flows kept their
original flow ID (this was crucial for identifying a malicious
flow, see Section 3.5).

3.5. Novelty Detection
We examined several novelty detection algorithms to

detect the attacks: deep autoencoder, local outlier factor
(LOF), and one-class SVM (OCSVM). After comparing
them, we selected for each attack the method which yielded
the best results in terms of the F1-score and AUC score.
A deep autoencoder model was chosen to detect CRCC
attacks, and a local outlier factor (LOF) model was chosen
to detect Wi-Fi micro-jamming attacks. All of the results
are presented in Section 3.7.

3.5.1. Deep Autoencoder (AE)
A deep autoencoder (AE) is a neural network which

copies its input to its output after processing it through
several smaller hidden layers. The network is trained to
reduce the reconstruction error caused by transferring the
input through these internal layers. Amarbayasgalan et al.
[22] used this model to perform novelty detection using the
following method (shown in Figure 10). First, the model
is trained on benign data. Then, the model is tested on a
dataset containing both benign and anomalous instances.
A reconstruction error threshold is set to determine whether
an instance is anomalous. Data instances with a reconstruc-
tion error above the threshold are considered anomalous
(in our study, 2-norm was used to calculate the distance
between the reconstructed data instances). The model
can effectively detect anomalies since it was trained on
just benign data. It expects the reconstruction errors of a
normally behaving network to be small; any abnormality in
the network’s behavior will result in a data instance with
a higher reconstruction error, because the model was not
trained to reconstruct this kind of data instance properly.

For the evaluation of both attacks, we used a min-max
scaler to scale the features to be in the [0-1] range. Then,
we used a deep autoencoder with five hidden layers. The
input layer consisted of 13 nodes, which was then reduced
to nine, six, and four nodes. After that, the hidden layers

12

Train a deep AE
model using the

train set’s
reconstruction error

𝑥 − 𝑥′ 2

Get the test set’s
reconstruction error

𝑥 − 𝑥′ 2

Determine threshold
and classify test set

data samples as
malicious\benign

Figure 10: Process of using deep autoencoder for novelty detection.

expanded to six and nine, and finally expanded to 13 nodes,
which were used as the output layer (see Figure 11). In all
the hidden layers, we used the tanh activation function as
it works well on normalized data. Finally, in the output
layer, we used the sigmoid activation function to make
the features’ values be in the [0-1] range, so it can be
comparable to the features in the input layer.

3.5.2. Local Outlier Factor (LOF)
As described by Breunig et al. [23], the local outlier

factor (LOF) model is an unsupervised clustering model
used for anomaly and novelty detection. The LOF model
computes the density around each data instance in the
feature space and uses it to determine which instances are
anomalous. The density is defined as the mass per unit
of volume. The LOF model relies on the fact that anoma-
lies will be positioned in low density areas in the feature
space, i.e., isolated from the rest of the data instances. It
calculates the local density of each data instance compared
to k of its neighbors. Once it discovers an instance with
substantially lower density than its neighbors, it deems the
instance an anomaly.

For the evaluation of both attacks, we used a min-max
scaler to scale the features to be in the [0-1] range. Then, we
used the LOF model as a semi-supervised novelty detection
model with k = 1000. This value of k let the model focus
on global anomalies instead of local anomalies.

3.5.3. One-Class Support Vector Machine (OCSVM)
The one-class support vector machine (OCSVM) model

is an unsupervised model that can be used for anomaly
detection tasks in high-dimensional data. According to
Erfani et al. [24], OCSVM maps the input data to a
higher dimension space in which it’s easier to distinguish
between normal and anomalous data points. The mapping
is determined by a kernel function that if chosen correctly,

can theoretically model any non-linear pattern of normal
behavior. OCSVM works best on small but feature-rich
datasets and suffers from the curse of dimensionality with
bigger datasets.

For the evaluation of both attacks, we used a min-max
scaler to scale the features to be in the [0-1] range. Then,
we used the OCSVM model as a semi-supervised novelty
detection model with nu = 0.1. nu is the upper bound
on the fraction of margin errors and a lower bound of the
fraction of support vectors relative to the total number of
training examples.

3.6. Novelty Detection Process
The novelty detection process was done as follows. The

same process was applied when training on noise-free data
and noisy data. First, the models were trained on benign
mini-flows (as done in novelty detection). Then, we used
the models to detect malicious mini-flows in the test set
(which included both benign and malicious mini-flows).
To determine whether a specific flow was malicious, we
gathered all its mini-flows (using the unique ID of their
original flow) and calculated the percentage of malicious
mini-flows. Values above a certain threshold, the mini-
flow threshold, indicated that the flow should be deemed
malicious. We trained the models without cover traffic, to
make sure that the attacks are detectable in a noise-free
environment, and then moved on to training the models
with cover traffic.

Figure 12 presents the setup for the CRCC attack with
cover traffic. First, the router was set up with two logi-
cally isolated networks: the public host network and the
isolated guest network (above and below the dotted line,
respectively). The host network consisted of the CRCC
receiver and the router. The guest network consisted of the
CRCC sender, the router and two additional computers
responsible for generating the cover traffic (in the figure,
"Cover 1" and "Cover 2"). The guest network also consisted
of an access point (AP) and a man-in-the-middle (MITM)
computer which served as the defense component, analyz-
ing the traffic to and from the router to detect abnormal
activity. Some of the clients were connected to the AP, so
the MITM could record the traffic as it goes to and from
the router2.

Figure 13 describes the setup for the Wi-Fi micro-
jamming attack with cover traffic. Like the CRCC setup,
the router hosts two logically isolated networks: the host
and guest (below and above the dotted line, respectively)
networks which consists of all the required devices to re-
produce the Wi-Fi micro-jamming attack with added cover
traffic (micro-jamming sender/receiver, a router, an AP,
cover traffic generators, and a MITM computer). Note
that the micro-jamming receiver in the presented setup

2A very small number of the packets from the guest network were
also received by the MITM computer and filtered out before the
feature extraction step. Even though those packets were received, it
is very unlikely that they had any effect due to their small amount.

13

Input Layer ∈ ℝ¹³ Hidden Layer ∈ ℝ⁹ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁶ Hidden Layer ∈ ℝ⁹ Output Layer ∈ ℝ¹³

Figure 11: Deep autoencoder structure.

Cover 1

CRCC
Sender

CRCC
Receiver

Access
Point

Defense

Router

Cover 2

Guest Network Host Network

Figure 12: The CRCC attack setup with cover traffic.

is the victim device that connects to a malicious website
(in Section 2.3, the receiver was described as the attacker
itself). The malicious website is hosted by a local DNS
server, which is not seen in the image but was part of the
setup.

3.7. Defense Results
In this section, we present the results of our evaluation

of the proposed defense system’s performance. The models’
performance was measured using three metrics: the ROC
curve (with AUC score), F1-score of mini-flows predictions

and F1-score of flow prediction. Note that since the dataset
is imbalanced, the F1-score metric is more indicative of the
model’s performance than the AUC score.

As explained in Section 3.5, all of the models were
responsible for predicting whether a mini-flow is malicious
or not. The determination of whether a flow is malicious is
based on the percentage of malicious mini-flows associated
with it; if the percentage is above the mini-flow threshold,
the flow is considered malicious.

14

Cover 1

Micro-jam
Receiver

Micro-jam
Sender

Access
Point

Defense

Router

Cover 2

Host Network Micro-jam signal (Originated from a guest network PC)

Figure 13: The Wi-Fi micro-jamming setup with cover traffic.

3.7.1. Cross-Router Covert Channel
Table 5 summarizes the results of CRCC detection

with/without cover traffic by three different models: LOF,
Deep AE, and OCSVM. To obtain these results, we used
the models with different parameters, as described in Ta-
ble 6. In the deep AE model, the AE threshold is the
reconstruction error threshold.

As seen in Table 5, the deep autoencoder model out-
performed the other two models in all of the evaluation
metrices: AUC score, F1-score for mini-flow detection, and
F1-score for flow identification. To get these results, we set
the mini-flow threshold to be 2%; in other words, if 2% of
the mini-flows of a specific flow are malicious, we classify
the whole flow as malicious. We set the reconstruction
error threshold at one (i.e., the 2-norm result between two
data instances should be greater than one). The model’s
parameter settings were determined using trial and error
and were found to yield the best results for CRCC detection
with/without cover traffic. The ROC curves of the deep
AE model used for CRCC detection with and without cover
traffic are presented in Figures 14b and 14a respectively.

The AUC and F1-score results show that the mini-
flow detection algorithm is effective in detecting malicious
flows, both with and without cover traffic. In both cases
the performance based on F1-score of the identification
of malicious flows is good, and the F1-score of mini-flow
detection improved when cover traffic was present, as dis-
cussed in greater detail in Section 4. We believe that the
performance of this algorithm can be improved further by
applying domain knowledge relevant to the specific network
being protected.

3.7.2. Wi-Fi Micro-Jamming
Table 7 summarizes the results of Wi-Fi micro-jamming

detection with/without cover traffic by three different mod-
els: LOF, Deep AE, and OCSVM. To obtain these results,
we used the models with different parameters, as described
in Table 8. In the Deep AE model, the AE threshold is the
reconstruction error threshold.

As seen in Table 7, the LOF model outperformed the
other two models in all of the evaluation metrices: AUC
score, F1-score for mini-flow detection, and F1-score for
flow identification. To get these results, we set the mini-
flow threshold to be 30% when detecting the attack without
cover traffic, and 60% when detecting the attack with cover
traffic present; in other words, for example, if 30% of the
mini-flows of a specific flow are malicious when detecting
the attack without cover traffic, we classify the whole flow
as malicious. Also, we set k = 1000. The model’s parameter
settings were determined using trial and error and were
found to yield the best results for Wi-Fi micro-jamming
detection with/without cover traffic. The ROC curves of
the LOF model used for Wi-Fi micro-jamming detection
with and without cover traffic are presented in Figures 14d
and 14c respectively.

The AUC and F1-score results show that the malicious
flow detection performance is satisfactory with cover traf-
fic and excellent without cover traffic. These results are
discussed in greater detail in Section 4. We believe that
performance of this algorithm can be improved further by
applying domain knowledge relevant to the specific network
being protected.

15

LOF Deep AE OCSVM
AUC F1-s (MF) F1-s (F) AUC F1-s (MF) F1-s (F) AUC F1-s (MF) F1-s (F)

No CT 0.88 0.674 0.722 0.823 0.367 0.922 0.719 0.689 0.837
With CT 0.771 0.712 0.702 0.791 0.553 0.889 0.716 0.494 0.551

Table 5: Summarized results of CRCC detection. Note that we abbreviated "mini-flow" to "MF", "flow" to "F", "cover traffic" to "CT", and
"F1-score" to "F1-s".

LOF Deep AE OCSVM
No CT MF_TH = 0.3, k = 1000 MF_TH = 0.02, AE_TH = 1 MF_TH = 0.3, NU = 0.1

With CT MF_TH = 0.6, k = 1000 MF_TH = 0.02, AE_TH = 2 MF_TH = 0.3, NU = 0.1
Table 6: Model parameters used in CRCC detection. Note that we abbreviated "mini-flow" to "MF", "threshold" to "TH", and "cover traffic" to

"CT".

4. Discussion

In this paper, we presented two timing covert channel
attacks that can leak sensitive information from a logi-
cally isolated network to a public network (connected to
the Internet). Both attacks rely on deliberately delaying
the router’s response time, which is done to signal the re-
ceiver the sensitive information. Both attacks are difficult
to detect, because they disturb the behavior of the net-
work traffic rather than sending specific packets or making
irregular changes in packets’ fields.

We also presented an ML/DL methods to detect the
covert channels. In the CRCC attack case, the results
indicate high AUC scores, low mini-flow F1-scores, and
high flow F1-scores. Also, the mini-flow threshold was
very low - only two percent. We’ve seen that the model
rarely makes a prediction which is false positive but suffers
from lots of false negative. For this reason, the F1-score of
the mini-flows was very low (the predictions suffered from
low recall but high precision). But, since the number of
false positives was very low, we could use a low mini-flow
threshold which was very precise in determining which flow
is malicious.

Overall, the CRCC attack detection was considerably
good, even when it was performed in a noisy environment
with random configurations. We observed that adding cover
traffic improved the detection capabilities. We assume that
this occurs because the traffic generated by the CRCC
attack is substantially different from regular network traffic,
making it easier to identify. In a noise-free environment,
the only traffic that exists is that of the CRCC attack, so
there is less difference between the training and test set.

In the Wi-Fi micro-jamming attack case, the results
indicate good values in all the evaluation metrices when
the detection was performed without cover traffic, but
when cover traffic was added, they became much worse.
Also, the mini-flow threshold was very high - thirty percent
without cover traffic and sixty percent with it. During
the testing process, we saw the model suffers from a lot
of false positives, which made us put a very high mini-
flow threshold. Even with that, the large number of false
positive mini-flows worsened the model’s performance so
it could barely detect the attack when cover traffic was
present.

Overall, we could detect the attack in both the noisy and
noise-free environments. Contrary to the CRCC attack, the
model’s performance declined when cover traffic was added.
The reason for that is that the Wi-Fi micro-jamming attack,
as opposed to CRCC, uses fewer packets, and transmits at
a lower rate. Essentially, the attack’s traffic is not distinct
as the traffic of the CRCC attack. For this reason, the
cover traffic masked the attack’s traffic and made the model
suffer from many false positive predictions.

Also, as shown in Section 3.3, we configured the Wi-
Fi micro-jamming attack with the optimal values for the
attack’s success and didn’t change them while collecting
data. This was done because when we experimented with
different configuration values, it was difficult to transmit
a message with no errors. So, we wanted to be sure that
the test data only contains recordings of successful leak
attacks. Even though the configuration did not change and
the attack with this configuration caused relatively large
delays in the router’s response time (in comparison with
other configuration values), our model could barely detect
the attack with added cover traffic. We assume that the
reason for that is that our model does not have a packet
type feature; this was an intentional decision on our part,
since the defense mechanism would not have knowledge of
the type of packets used by the attacker (by focusing on a
specific packet type response, an attacker can decode the
data).

4.1. Attack Limitations
Both attacks discussed in this work require additional

setup on the side of the attacker. As explained in Sec-
tion 2.1, the attacks can only work if the attacker is able to
craft custom traffic on the sender computer, send the data
through the covert channel, decode the leaked information
in the receiver computer and leak it online, without being
noticed by any intrusion detection system. If the attacker
has sufficient skills to install malware on the receiver’s
machine (which is connected to the internet), the attack’s
success is still dependent on the attacker being able to
access the isolated system (the sender side). Moreover,
in the Wi-Fi micro-jamming case, the attack requires an
installation of a physical implant in the sender’s network,
which means the attacker must be able to access at least

16

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Deep AE ROC without Cover Traffic (AUC = 0.823)

(a) ROC curve of the performance of the Deep autoencoder
detecting the CRCC attack without cover traffic.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Deep AE ROC with Cover Traffic (AUC = 0.791)

(b) ROC curve of the performance of the Deep autoencoder
detecting the CRCC attack with cover traffic.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

LOF ROC without Cover Traffic (AUC = 0.840)

(c) ROC curve of the performance of the LOF model detecting the
Wi-Fi micro-jamming attack without cover traffic.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
LOF ROC with Cover Traffic (AUC = 0.637)

(d) ROC curve of the performance of the LOF model detecting the
Wi-Fi micro-jamming attack with cover traffic.

Figure 14: ROC curves of the performance of CRCC and Wi-Fi Micro-jamming detectors with and without cover traffic.

the vicinity of the isolated network to perform this attack.
The reason for this is that the attack relies on a radio
frequency (RF) signal to cause the delays, and the power
of an RF signal decreases with distance. In the CRCC case,
it is not limited by physical distance, but the method of
delaying the response time (overloading the router with
packets) is very noticeable.

All of this makes the attacks very difficult to perform.
Only attackers the likes of nation-state actors, which could
access the isolated system through other means, are proba-
bly able to perform the attacks. Nevertheless, if an attacker
can overcome the mentioned difficulties, the isolated net-
work’s confidentiality can be compromised.

Also, it is important to note that using a single router
as the host of both public and private networks is not
compatible with network security’s best practices. Still,
the contribution of this work is showing that this kind of
attack is theoretically possible and should be considered
by security officers.

4.2. Defense Limitations
The solution that we propose to deal with the attacks

described in this paper is based on ML/DL models that
learn the network’s "normal" behavior and perform novelty
detection to detect the attacks. This defense system has
some limitations. First, we assume that it is possible to
integrate a man-in-the-middle device that can record all
the network’s traffic and process it to learn the network’s
behavior. Since it records all the network’s traffic, including
sensitive network data, this defense mechanism can become
a prime target for hackers that wish to steal confidential
information from the network. Moreover, to detect the
attacks in real time, the defense mechanism should be able
to record a large amount of network traffic and process it
in real-time to detect the attack. This poses a big challenge
in both software and hardware domains when developing
the defense mechanism. Finally, network traffic tends to
change over time for various reasons like clients’ constant
connection and disconnection, different network services
usage and more. So, the defense mechanism should be
constantly trained, and since it’s simultaneously trying to

17

LOF Deep AE OCSVM
AUC F1-s (MF) F1-s (F) AUC F1-s (MF) F1-s (F) AUC F1-s (MF) F1-s (F)

No CT 0.840 0.695 0.967 0.601 0.004 0.649 0.804 0.672 0.974
With CT 0.637 0.425 0.641 0.594 0.485 0.647 0.591 0.296 0.552

Table 7: Summarized results of Wi-Fi micro-jamming detection. Note that we abbreviated "mini-flow" to "MF", "flow" to "F", "cover traffic" to
"CT", and "F1-score" to "F1-s".

LOF Deep AE OCSVM
No CT MF_TH = 0.6, k = 1000 MF_TH = 0.97, AE_TH = 0.45 MF_TH = 0.5, NU = 0.2
With CT MF_TH = 0.3, k = 1000 MF_TH = 0.1, AE_TH = 0.9 MF_TH = 0.15, NU = 0.1

Table 8: Model parameters used in Wi-Fi micro-jamming detection. Note that we abbreviated "mini-flow" to "MF", "threshold" to "TH", and
"cover traffic" to "CT".

detect the attacks, it’ll probably suffer from many false-
positive detections.

4.3. Related Work
This work presents two network timing covert channels

and an ML/DL defense mechanism that can detect them.
In the timing channel implemented by Cabuk et al. [25],

the covert information was divided into small, fixed-size
timing windows. The sender’s and receiver’s times were
synchronized. If the sender wanted to send the bit ’1’, it
would send a packet in the current timing window. For
’0’, it would send nothing in the current timing window.
Another work that presented a network timing covert chan-
nel that relies on packet arrival patterns was of Brodley
and Spafford [26]. In their work, the receiver record packet
arrival times sent by the sender and sorts them into two
sets: S0 and S1. When the sender wants to send the bit
’1’, it replays a packet randomly chosen from the S1 set.
For the bit ’0’, it replays a random packet from S0.

As for timing covert channel detection, Goher et al.
[27] mentioned that timing covert channels are difficult to
detect, because different applications on the network have
different communication patterns that mask the irregular
pattern of the covert channel. The authors presented a
method for the detection of the timing covert channel which
measures the interarrival time of packets and calculates
attributes like the variance and difference between adjacent
interarrival times. It is assumed that a covert channel that
operates in a focused manner to leak information will have
different statistical attributes than the seemingly random
network communication of different applications. In our
work, we take a similar approach, but instead of relying on
statistical analysis for detection, we use machine and deep
learning algorithms.

4.4. Future Work
In future work we plan to focus on finding the CRCC

attack’s optimal configuration and improving the defense
mechanism by making it operate in real-time and finding
methods to better identify the Wi-Fi micro-jamming attack
with cover traffic.

Regarding the CRCC attack, in this work we assumed
that the leaked data transmission rate was one bit per

second. This may not be the max throughput possible for
this attack. Implementing the attack in a more efficient
programming language than Python like the C program-
ming language, can improve the attack’s performance and
enable further exploration of the attack’s optimal configura-
tion. Also, both attacks may be improved by implementing
an error correction/detection mechanism that will allow
to increase the leaked data rate while keeping the data
transmission reliable.

Regarding the defense mechanism, it is currently only
capable of detecting attacks offline. To improve it, it should
be implemented as a real-time detector which will be able
to identify abnormal communication patterns and alert the
network’s administrator. We believe that the mechanism
should be integrated in organizations’ central routers, so it
can analyze all a network’s communication. The deploy-
ment should include an extensive training period in which
the mechanism can learn the network’s normal behavior;
then it could record one-second segments of the network
traffic and predict whether an anomaly is present in a
segment.

Also, since the detection of the Wi-Fi micro-jamming
attack with cover traffic is not sufficient for a real-time
detector, and the fact that the network behavior constantly
changes due to clients connecting and disconnecting, we pro-
pose exploring unsupervised/semi-supervised online learn-
ing models. These models are better suited for training on
an ever-changing stream of data and might output better
results than the models suggested in this work.

Finally, we also suggest that instead of determining
the maliciousness of a flow based on the percentage of its
malicious mini-flows, the classification of a malicious flow
should be determined by a more dynamic "malicious score
meter." In this case, each flow will receive a malicious score
which will be initialized to zero. Each time a malicious
mini-flow is detected, the score will increase by a small
amount (for example, +0.1), and each time a benign mini-
flow is detected, the score will decrease by a larger amount
(for example, -0.5). Then, if a flow’s malicious score exceeds
a predefined threshold, it will be identified as malicious.
This method is better fitted to dynamic detection and
will lower the false positive detection of flows due to the
small amount that is added to the score when identifying

18

a malicious mini-flow.

4.5. Conclusion
In this work, we present two network timing covert

channel attacks which can be used to break logical network
isolation. By using specially crafted network traffic to
create delays in the router’s response time, we were able to
leak sensitive information between two logically separated
networks. We also proposed a defense mechanism based on
ML and DL algorithms. We showed that the information
leakage of both attacks can be detected by the defense
mechanism in both a noisy and noise-free environment.
Since the Wi-Fi micro-jamming attack uses low power
RF to inflict delays in the router’s responses rather than
overloading the router with control plane packets, and the
fact that we could barely detect the Wi-Fi micro-jamming
attack with our model when cover traffic was present, we
conclude that the Wi-Fi micro-jamming attack is stealthier
than the CRCC attack. Network operators should evaluate
their logically isolated networks and determine whether
they match the attack model presented in this work. If
so, they should consider applying the defense we presented
here to detect and block cross-router attacks.

Acknowledgments

This work was supported by Israel Science Foundation
grants 702/16 and 703/16. We thank Eyal Ronen for
providing the inspiration and equipment for initiating our
Wi-Fi micro-jamming research. We also thank Clémentine
Maurice for providing the motivation for our cross-router
covert channel research, and our WOOT shepherd, Paul
Pearce, for helping us improve the initial workshop paper.
Finally, we would like to thank Yagel Netanel for designing
and implementing large parts of the CRCC attack system
used to collect data for this research.

References

[1] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-
Wei Hsu, Chong Kuan Chen, and Shiuhpyng Shieh. Iot security:
Ongoing challenges and research opportunities. In 7th IEEE
International Conference on Service-Oriented Computing and
Applications, SOCA 2014, Matsue, Japan, November 17-19,
2014, pages 230–234. IEEE Computer Society, 2014.

[2] Johannes Sametinger, Jerzy W. Rozenblit, Roman L. Lysecky,
and Peter Ott. Security challenges for medical devices. Commun.
ACM, 58(4):74–82, 2015.

[3] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to indus-
trial control systems (ics) security. NIST special publication,
800(82):16–16, 2011.

[4] Medical device security, VA enterprise design patterns privacy
and security, January 2017.

[5] Adar Ovadya, Rom Ogen, Yakov Mallah, Niv Gilboa, and Yossi
Oren. Cross-router covert channels. In Alex Gantman and Clé-
mentine Maurice, editors, 13th USENIX Workshop on Offensive
Technologies, WOOT 2019, Santa Clara, CA, USA, August
12-13, 2019. USENIX Association, 2019.

[6] Rom Ogen, Kfir Zvi, Omer Shwartz, and Yossi Oren. Sensorless,
permissionless information exfiltration with wi-fi micro-jamming.
In Christian Rossow and Yves Younan, editors, 12th USENIX
Workshop on Offensive Technologies, WOOT 2018, Baltimore,
MD, USA, August 13-14, 2018. USENIX Association, 2018.

[7] Oren Shvartzman and Yagel Netanel. Characterization
and detection of cross-router covert channels github repos-
itory. https://github.com/orenshva/Characterization-and-
Detection-of-Cross-Router-Covert-Channels, 2022.

[8] Butler W. Lampson. A note on the confinement problem. Com-
mun. ACM, 16(10):613–615, 1973.

[9] Sebastian Zander, Grenville J. Armitage, and Philip Branch. A
survey of covert channels and countermeasures in computer net-
work protocols. IEEE Communications Surveys and Tutorials,
9(1-4):44–57, 2007.

[10] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-cores cache covert channel. In
Magnus Almgren, Vincenzo Gulisano, and Federico Maggi, ed-
itors, Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 46–64, Cham, 2015. Springer International
Publishing.

[11] Jing Tian, Gang Xiong, Zhen Li, and Gaopeng Gou. A survey of
key technologies for constructing network covert channel. Secur.
Commun. Networks, 2020:8892896:1–8892896:20, 2020.

[12] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas
Giner, Daniel Gruss, Carlo Alberto Boano, Stefan Mangard,
and Kay Römer. Hello from the other side: SSH over robust
cache covert channels in the cloud. In 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017. The
Internet Society, 2017.

[13] Adel El-Atawy, Qi Duan, and Ehab Al-Shaer. A novel class of
robust covert channels using out-of-order packets. IEEE Trans.
Dependable Secur. Comput., 14(2):116–129, 2017.

[14] Eric Wustrow, Colleen Swanson, and J. Alex Halderman. Tap-
dance: End-to-middle anticensorship without flow blocking. In
Kevin Fu and Jaeyeon Jung, editors, Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014, pages 159–174. USENIX Association, 2014.

[15] Dubravko Miljković. Review of novelty detection methods. In
The 33rd International Convention MIPRO, pages 593–598.
IEEE, 2010.

[16] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang,
Beichuan Zhang, and Lixia Zhang. A case for stateful forwarding
plane. Comput. Commun., 36(7):779–791, 2013.

[17] Andrés Felipe Murillo-Piedrahita, Sandra Julieta Rueda, Diogo
M. F. Mattos, and Otto Carlos M. B. Duarte. Flowfence: a denial
of service defense system for software defined networking. In 2015
Global Information Infrastructure and Networking Symposium,
GIIS 2015, Guadalajara, Mexico, October 28-30, 2015, pages
1–6. IEEE, 2015.

[18] James F. Kurose and Keith W. Ross. Computer networking -
a top-down approach featuring the internet. Addison-Wesley-
Longman, 2001.

[19] IEEE 802.11 Working Group. Ieee standard for information
technology–telecommunications and information exchange be-
tween systems local and metropolitan area networks–specific
requirements - part 11: Wireless lan medium access control
(mac) and physical layer (phy) specifications. IEEE Std 802.11-
2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, Dec
2016.

[20] Microchip Technology Inc. Atmega256rfr2 xplained pro
evaluation kit. http://www.microchip.com/DevelopmentTools/
ProductDetails.aspx?PartNO=atmega256rfr2-xpro.

[21] Jonathan J. Davis and Andrew J. Clark. Data preprocessing for
anomaly based network intrusion detection: A review. Comput.
Secur., 30(6-7):353–375, 2011.

[22] Tsatsral Amarbayasgalan, Bilguun Jargalsaikhan, and Keun Ho
Ryu. Unsupervised novelty detection using deep autoencoders
with density based clustering. Applied Sciences, 8(9):1468, 2018.

[23] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and

19

https://github.com/orenshva/Characterization-and-Detection-of-Cross-Router-Covert-Channels
https://github.com/orenshva/Characterization-and-Detection-of-Cross-Router-Covert-Channels
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=atmega256rfr2-xpro
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=atmega256rfr2-xpro

Jörg Sander. LOF: identifying density-based local outliers. In
Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein,
editors, Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000, Dallas,
Texas, USA, pages 93–104. ACM, 2000.

[24] Sarah M. Erfani, Sutharshan Rajasegarar, Shanika Karunasek-
era, and Christopher Leckie. High-dimensional and large-scale
anomaly detection using a linear one-class SVM with deep learn-
ing. Pattern Recognit., 58:121–134, 2016.

[25] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert
timing channels: design and detection. In Vijayalakshmi Atluri,
Birgit Pfitzmann, and Patrick D. McDaniel, editors, Proceedings
of the 11th ACM Conference on Computer and Communications
Security, CCS 2004, Washington, DC, USA, October 25-29,
2004, pages 178–187. ACM, 2004.

[26] CE Brodley, EH Spafford, and S Cabuk. Network covert channels:
Design, analysis, detection, and elimination. Dissertations &
Theses, Purdue University, 2006.

[27] S Zerafshan Goher, Barkha Javed, and Nazar Abbas Saqib.
Covert channel detection: A survey based analysis. In High
Capacity Optical Networks and Emerging/Enabling Technologies,
pages 057–065. IEEE, 2012.

20

	Introduction
	Network Covert Timing Channels
	Network Covert Timing Channels Detection

	Covert Channel Attacks
	Attacks Prerequisites
	Cross-Router Covert Channel
	Attack theoretical basis
	Attack process
	Methodology
	Attack Results

	Wi-Fi Micro-jamming
	CSMA protocols and Wi-Fi
	Attack theoretical basis
	Attack process
	Methodology
	Attack Results

	 Covert Channel Defense
	Defense Motivation
	Defense theoretical basis
	Data Collection
	Feature Extraction
	Novelty Detection
	Deep Autoencoder (AE)
	Local Outlier Factor (LOF)
	One-Class Support Vector Machine (OCSVM)

	Novelty Detection Process
	 Defense Results
	Cross-Router Covert Channel
	Wi-Fi Micro-Jamming

	Discussion
	Attack Limitations
	Defense Limitations
	Related Work
	Future Work
	Conclusion

