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ABSTRACT

The constant reduction in memory cell sizes has increased memory
density and reduced power consumption, but has also affected its
reliability. The Rowhammer attack exploits this reduced reliability
to induce bit flips in memory, without directly accessing these bits.
Most Rowhammer attacks target software integrity, but some recent
attacks demonstrated its use for compromising confidentiality.

Continuing this trend, in this paper we observe that the Rowham-
mer attack strongly correlates with the memory instantaneous
power consumption. We exploit this observation to design Ham-
merScope, a Rowhammer-based attack technique for measuring
the power consumption of the memory unit. Because the power
consumption correlates with the level of activity of the memory,
HammerScope allows an attacker to infer memory activity.

To demonstrate the offensive capabilities of HammerScope, we
use it tomount three information leakage attacks.We first show that
HammerScope can be used to break kernel address-space layout
randomization (KASLR). Our second attack uses memory activity
as a covert channel for a Spectre attack, allowing us to leak infor-
mation from the operating system kernel. Finally, we demonstrate
the use of HammerScope for performing website fingerprinting,
compromising user privacy. Our work demonstrates the importance
of finding systematic solutions for Rowhammer attacks.
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1 INTRODUCTION

Rowhammer is a hardware vulnerability affecting nearly all modern
systems equipped with dynamic random access memory (DRAM).
At a high level, by performing certain carefully-orchestrated mem-
ory access patterns, an attacker can flip bits in memory, without
directly writing to these bits. From a security perspective, Rowham-
mer is typically viewed as a (restricted) write primitive, where an
attacker can modify the contents of memory they are prohibited
from accessing.

Ever since its first public disclosure in 2014 [30], and consequent
introduction to the security research community in 2015 [50], the
Rowhammer fault attack is a source of considerable academic inter-
est. In particular, Rowhammer’s ability to reliably flip bits across
security boundaries has been exploited for sandbox escapes [24, 50],
privilege escalation attacks on operating systems and hypervi-
sors [22, 24, 47, 50, 56, 61, 65], denial-of-service attacks [22, 26],
and even for fault injection in cryptographic protocols [4]. More
recently, Rowhammer attacks have been demonstrated against
hardware-based Rowhammer countermeasures, such as targeted
row refresh [17] and error correcting codes (ECC-RAM) [10].

https://doi.org/10.1145/3548606.3560688
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While each of these works may be harmful from a security per-
spective, a common trend remains. In nearly all Rowhammer-based
exploits the attacker is actively trying to break the system’s data
integrity by flipping bits they cannot otherwise access, usually due
to software isolation mechanisms. Much less is known about other
security implications of Rowhammer, such as data confidentiality
and authenticity.

A first indication that the effects of Rowhammer span beyond
just integrity was given by RAMBleed [34], which showed that data-
dependent bit flips can be used to read the contents of memory
cells, as opposed to flipping bits in them. More recently, SpecHam-
mer [54] demonstrated that Rowhammer can be used to enhance
Spectre, again leaking data across security boundaries. With data
confidentiality being a new front for Rowhammer research, in this
paper we ask the following question:
Can Rowhammer be used for additional confidentiality applications?
What will it take for an attacker to mount such attacks and what

information can be leaked with them?

1.1 Our Contribution

We present HammerScope, a new technique for using Rowhammer
to measure the power consumption of memory modules.
A Changing Threshold. To flip a specific victim bit using
Rowhammer, an attacker must activate nearby aggressor rows a
certain number of times in quick succession.We study the activation
threshold required for a successful Rowhammer-induced bit flip,
and discover that it correlates with the power consumption of the
hammered memory module. In particular, the higher the power
consumption, the more row activations are required to flip a bit.
ConstructingHammerScope. Armed with this observation we
construct HammerScope, a side-channel attack which measures
the power consumption of direct in-line memory modules (DIMMs)
using only unprivileged software. At a high level, HammerScope
continuously Rowhammers a targeted bit, noting how many activa-
tions are required to successfully flip it. As the activation threshold
correlates with the DIMM’s power consumption, HammerScope
can trace the power consumption as it changes over time. Thus,
HammerScope effectively turns Rowhammer into a tool which
allows attackers to monitor the DIMM’s power consumption via
unprivileged software, without requiring any additional equipment.
Benchmarking and AnalyzingHammerScope. Benchmarking
HammerScope across six systems, we show that it can track the
DIMM’s power consumption on both DDR3 and DDR4 memory.
Ironically, we show that doubling the row refresh period on modern
DDR4 modules also doubles HammerScope’s sampling rate, allow-
ing for more accurate power measurements. Finally, we hypothesize
about the mechanism behind HammerScope and propose several
explanations for the phenomenon under the parasitic capacitance
model.
Mounting Rowhammer-based Power Analysis Attacks. As
a final contribution, we show that Rowhammer has privacy impli-
cations beyond fault attacks. We show how recording the DIMM’s
power consumption can be used for accurate instruction timing,
derandomizing KASLR, mounting power-analysis-based Spectre
attacks, and even for website fingerprinting. We demonstrate that
all of these use cases are possible via HammerScope, and show

that HammerScope provides a vector for mounting power analysis
attacks using software-only means.
Summary of Contributions. In summary, in this paper we make
the following contributions:
• We formalize and characterize the behavior of Rowhammer fault
attacks under varying power conditions, and show that there is
a distinct relationship between DRAM susceptibility to Rowham-
mer bit flips and its power consumption (Sections 4.1 to 4.4).

• We introduce a new attack technique, called HammerScope, and
show that it can be applied to multiple desktop and laptop com-
puters with DDR3 and DDR4 memories from multiple vendors
(Section 4.5).

• We apply HammerScope to carry out a series of end-to-end
attacks, which can break KASLR, leak memory from the kernel,
and perform website fingerprinting (Section 5).

1.2 Artifact Availability and Responsible

Disclosure

Wewill release all the artifacts related to this project as open source,
including code for synchronized Rowhammer, implementations
of our feedback-based and threshold-based HammerScope attack
methods, and the code for our end-to-end attack on KASLR. In
addition, we will release datasets containing to our website fin-
gerprinting traces, collected both using HammerScope and using
RAPL, together with the machine learning pipeline used for classifi-
cation. A subset of the artifacts is already available in the repository
found at https://github.com/hammerscope/artifacts.

We provided an early version of this paper to contacts at Intel,
AMD, Google and HP. We also shared our paper with JEDEC JC-42
committee, which contains representatives from various DRAM
manufacturers and other hardware vendors.

2 BACKGROUND

In this section we explain some key concepts and previous related
works associated with HammerScope.

2.1 DRAM

Dynamic random-access memory (DRAM) is used as the main
volatile memory for most desktops, servers and mobile devices. The
fundamental unit of storage in DRAM is a DRAM cell, which stores
one bit of data using a capacitor.

As Figure 1 shows, these cells are typically arranged into rows
consisting of multiple cells in parallel. Each cell is connected to
a vertical bit line through an access transistor [28]. Each of these
bit lines are shared by multiple rows of DRAM cells. The access
transistors themselves are controlled through word lines, which are
arranged horizontally and shared by multiple columns.
Accessing data from DRAM. The CPU cannot access data
stored in the capacitors directly. Instead, it interfaces with the cells
using an on-DRAM element called the row buffer, using a three-step
protocol: To read from a DRAM cell, the DRAM controller of the
CPU first issues an Activate command. This command toggles the
row’s word line, activating all access transistors in the row and
connecting the cells’ storage capacitors to the bit line. This transfers
the contents of the capacitors in the row containing the cell into the
row buffer, where they are converted to discrete digital values using

https://github.com/hammerscope/artifacts
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Figure 1: Structure of a DRAM chip. Taken from [3]

a sense amplifier circuit. Next, the DRAM controller issues a Read
command, moving data from the sense amplifiers to the DRAM bus.
Finally, the DRAM controller issues a Precharge command, which
restores the values of the row buffer back into the DRAM cells.
Refresh command. To prevent decay due to capacitors losing
their charge over time, DRAM chips must be periodically refreshed.
During the refresh operation, the DRAM reads a single row into the
row buffer and immediately writes it back into the cells. The CPU,
and in some cases the DRAM controller itself, performs a refresh
operation every few microseconds, iterating over all the rows in
a set pattern. The nominal refresh period of desktop-class DRAM
chips is 64 milliseconds, and a typical DRAM chip has 8192 rows,
which means a row refresh operation is scheduled approximately
every 8 microseconds.
Charge leakage. Writing a value to a DRAM cell sets the charge
stored in the cell’s capacitor to a fixed value, either to the DRAM
supply voltage 𝑉𝐷𝐷 or to 0. For clarity, the rest of the discussion
assumes the case of writing 𝑉𝐷𝐷 to the cell. This charge decays
over time, due to the cell capacitor’s intrinsic leakage. If it decays to
within a certain distance from 𝑉𝐷𝐷/2, the sense amplifier will not
be able to correctly recover the value originally stored in DRAM,
causing a potential bit flip. While the intrinsic leakage is simply
caused by the passage of time, there is another type of leakage,
called coupling leakage, which occurs when the target cell’s neigh-
boring rows are activated. This coupling leakage is the foundation
of the Rowhammer effect.

2.2 Rowhammer

Rowhammer is a fault attack on DRAM cells, first introduced by
Kim et al. [30] and further investigated by Jiang et al. [28]. The
Rowhammer attack builds on the observation that activating a row
of bits in DRAM depletes the charge of nearby rows due to coupling
effects. As a result, an adversary who maliciously accesses DRAM
in a controlled manner, causing a row to activate and deactivate
multiple times in a single refresh cycle, can cause bits in an adjacent
row to flip. We refer to bits vulnerable to row-hammering as flippy
and to the rows which are activated to flip a bit as aggressor rows.
Rowhammer attackmethodology. A typical Rowhammer attack
consists of several steps. The adversary first reverse engineers

the mapping of virtual addresses in its address space to physical
memory addresses and from those to DRAM locations in terms of
rows, banks, and ranks. The adversary then profiles the memory to
discover flippy bits. Next, the adversary massages memory to bring
a vulnerable victim memory location to map to a flippy bit. Finally,
the adversary repeatedly activates the aggressor rows to flip the
target bit. This final step is challenging because the adversary needs
to bypass the cache hierarchy to ensure that memory accesses are
served from DRAM.
Security impact of Rowhammer Past works proposed mul-
tiple ways of leveraging this attack to produce a security impact.
For example, Razavi et al. [47] use Rowhammer to break OpenSSH
public-key authentication and forge GPG signatures, Xiao et al. [61]
show how it can break the memory isolation in Xen and access
arbitrary physical memory on a shared machine, and Kwong et
al. [34] show how to extract an RSA key from an OpenSSH daemon.
Rowhammer attacks have been demonstrated in many settings:
from JavaScript [12, 24], over the network [39, 53], through hetero-
geneous FPGA-based systems [60], and even using GPUs [16].
Rowhammer defense. Multiple works proposed detecting and
preventing Rowhammer attacks using a combination of hardware
and software mechanisms [1, 5, 29, 35, 51]. DRAM vendors also
implemented countermeasures for Rowhammer in their own mod-
ules. The usual approach taken by most vendors is targeted row
refresh (TRR). In TRR, the DRAM module monitors which rows
are activated the most and preemptively issues extra row refresh
commands to neighboring rows. Yet, many implementations of
TRR are vulnerable to dedicated activation patterns that bypass
it [12, 17, 25, 27, 32].
Minimumactivation count. One performancemetric of Rowham-
mer which is important to this work is the minimum activation
count ACmin – how many times must the attacker activate the ag-
gressor rows before a particular bit flips. While the first published
attacks used millions of activations, newer attacks require as few
as 6,000 activations for some memory variants [25]. As we show in
our work, the minimum activation count differs between individual
cells in the same DRAM module, and it acts as a sharp threshold –
when properly configured, Rowhammer attacks which perform less
than ACmin row activations will always fail, whereas performing
slightly more than ACmin activations will flip the bit with a very
high probability.

2.3 Power Analysis

Power analysis is one of the most well-established forms of side-
channel attack [15, 31]. It exploits the dependency correlation be-
tween the instantaneous power consumption of CMOS devices
and the internal state changes of these devices over time. These
state changes depend on the instructions and data that are being
processed [41]. Consequently, an adversary who can monitor the
power consumption of a device can learn about its internal state.
To set up a power analysis attack, the attacker traditionally places
measurement probes between the device under test (DUT) and
its power supply, and collects the instantaneous current traveling
across the probes using a deep-memory oscilloscope. Due to the
required physical access, such attacks are considered a practical
threat only when the attacker has physical control of the DUT.
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Reducing proximity requirement. Replacing the power probes
with near-field electromagnetic probes [18] can relax the require-
ment for a physical contact, allowing attacks from within a few
millimeters from DUT. A further relaxation can be achieved by
measuring power consumption modulations over far-field elec-
tromagnetic waves, extending the range to a few meters [6, 45].
Genkin et al. [20] exploited power-related fluctuations of a laptop’s
ground line, accessible by touching exposed metal on the com-
puter’s chassis or the remote end of Ethernet, VGA or USB cables.
Despite the increase of range, these setups are still fundamentally
similar to contact-based attacks, since they require the attacker to
be physically adjacent to the DUT.

Removing Proximity Requirement. A more dramatic increase
in attack distance is achieved by causing a DUT to measure its own
power consumption and report it to the attacker. For example, an
on-board analog to digital converter (ADC) circuit can be used to
measure power consumption, allowing untrusted code to extract
secret keys from a TrustZone secure element [43]. In the case of
FPGA-based devices, Zick et al. [66] showed how reconfigurable
logic can make an FPGA measure its own supply voltage, and Schel-
lenberg et al. [48] showed how this primitive can be built into
a Trojan that enables a remote power analysis attack. Genkin et
al. [19] showed how a PC’s internal microphone can pick up power-
related emanations, allowing an adversary with remote access to
the microphone (for example, during a teleconference) to recover
secret information. In the domain of personal computers, the Platy-
pus attack showed how an adversary with access to the running
average power level (RAPL) register on Intel [38] and AMD [37]
processors can perform power analysis attacks. Since Platypus’
original discovery, access to the RAPL interface has been limited to
privileged software, thereby mitigating this attack vector.

3 ATTACK MODEL AND EXPERIMENTAL

SETUP

We assume a user-level adversary, which is capable of performing
repeated Rowhammer attacks on a target machine, as well as ob-
serving whether the attacks are successful. We explicitly note that
we assume no additional CPU or OS support for reporting power
consumption, battery levels, RF emanations, or any other power
consumption artifacts. We also do not require root-level access, per-
forming our HammerScope measurements using only user-level
permissions. Finally, unlike many Rowhammer attacks, we do not
make any assumptions regarding the victim’s memory location and
do not depend on “memory massaging” techniques.

Experimental setup. We evaluated our attack on a variety of
machines, as shown in Table 1, spanning multiple CPU generations
and both DDR3 and DDR4 modules. In the DDR3 machines, we
used code from the HammerTime software suite [52] to recover
the mapping between physical memory and DRAM layout, then
applied a standard double-sided Rowhammer attack to flip vulnera-
ble bits. For the DDR4 machines, we used code from the TRRespass
artifact repository [17] to recover the mapping, then used 9-sided
Rowhammer to flip bits. To convert the code of [17] to work in user
mode, we applied the methods of Kwong et al. [34] and Tobah et
al. [54] to force the Linux allocator to allocate a contiguous 2MB
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Figure 2: Activation count for three different rows (DDR3)

block, and then applied the time measurement method of Pessl et
al. [46] to find consecutive DRAM rows in this block.

CPU DRAM DRAM Kernel OS

Model Type Vendor Version Version

Core i7-4770 DDR3-1 Samsung 5.13.0 Ubuntu 20.04.1
Core i7-4790 (1) DDR3-2 Kingston 5.9.0 Debian 5.9.1
Core i7-4790 (2) DDR3-3 Kingston 5.9.0 Debian 5.9.1
Core i7-6600U DDR4-1 Samsung 5.4.1 Ubuntu 18.04.6
Core i7-7700 DDR4-2 Samsung 5.4.1 Ubuntu 18.04.6
Core i7-10700K DDR4-3 Samsung 5.13.0 Ubuntu 20.04.3
Core i7-8700K DDR4-4 Samsung 5.15.0 Ubuntu 20.04.2

Table 1: Test Machine Specifications

4 HAMMERSCOPE

As outlined above, the HammerScope attack is based on observing
a correlation between DRAM power consumption and number
of Rowhammer attempts required for obtaining a bit flip. More
specifically, we observe that as the DIMM’s power consumption
increases, bits in the DIMM become harder to flip, requiring more
Rowhammer attempts. Finally, as the DIMM’s power consumption
correlates with system activity, we can use Rowhammer as a power-
based side channel to monitor various system events.

4.1 Establishing the Activation Threshold

As HammerScope relies on using Rowhammer to observe DRAM
power consumption, our first task is to establish a baseline of the
number of row activations required to flip a bit. To that aim, we
first carried out a Rowhammer profiling step on a DDR3 memory
module (Table 1 DDR3-2), identifying several rows that contain
flippy bits. For each of these rows, we measured the probability that
it would experience a bit flip as a function of the number of row
activations. We measured 150 different activation counts between
250,000 and 995,000, repeatedly attempting to flip a bit 100 times
for each activation count.

Figure 2 shows the results of the experiment. Specifically, when
the number of activations is below some minimal threshold ACmin
there are no Rowhammer bit flips. Moreover, the threshold depends
on the selected vulnerable row. Finally, we observe that the proba-
bility of Rowhammer-induced bit flips when the activation count
is close to the activation threshold is low, which adds noise to our
measurement.
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4.2 Observing System Activity

Having established the value of ACmin across different rows for an
idle system, we now demonstrate how the number of row activation
required to flip a bit can be used to monitor the system’s memory
activity. To that aim, we run a program that repeatedly writes
to DRAM for 30 seconds and then leaves the memory idle for 10
seconds. In parallel to running our program, we repeatedly compute
the number of row activation required for flipping a pre-selected
Rowhammer vulnerable bit. Figure 3 presents the number of row
activations required as a function of time. As can be seen, the
number of row activations required to flip the targeted bit varies,
and is low during idle periods (white background), and high during
times of memory activity (gray background).
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Figure 3: Variation in ACmin while memory is idle and while

it is accessed.

4.3 Reducing Noise

While the signal depicted in Figure 3 clearly allows us to distin-
guish between regions of high and low memory activity, the signal
observed is still noisy. This is due to the low success probability
of Rowhammer with only ACmin activations (Figure 2), which pre-
ventsHammerScope from accurately measuring the DIMM’s power
consumption. In this section we show how to denoise the signal
observed via HammerScope, by identifying the best time to start a
Rowhammer attempt for a given vulnerable bit.
The Mechanics of Row Activations. We first recall that DRAM
cells are capacitors, which leak charge over time, resulting in bit
errors. To avoid loss of data, the memory controller periodically
issues Refresh commands, which replenish the charge in all the
capacitors of a row. We use the term refresh period to refer to the
time between two successive Refresh commands to the same row.
Increasing Rowhammer Success Probability. As Rowhammer
activations increase the rate of charge depletion from neighboring
rows, we hypothesize that a sequence of Rowhammer attacks which
fits within a row’s refresh period, and is not interrupted by a Refresh
command, will have a higher probability of flipping a vulnerable
bit in that row. In other words, each row has a vulnerable window
such that Rowhammer attacks started within the window have a
higher likelihood of being successful compared to attacks that start
outside the window, presumably because the attack can flip the bit
before the subsequent Refresh command.

To find this vulnerable window, we first carry out multiple
Rowhammer attempts on a chosen row, where each attempt con-
sists of a fixed number of row activations. For each attempt 𝑖 , we
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Figure 4: Finding the Rowhammer vulnerable window on

DDR3

record the starting time, 𝑇𝑖 , and whether the attempt is successful
(i.e., results in a bit flip). We then use the collected information to
find the refresh period, and from it the row’s vulnerable window.
Identifying Refresh Period. To identify the refresh period, we
search a space of candidates spanning all possible refresh periods
between 20ms and 65ms with a resolution of 1 nanosecond, result-
ing in a search space of 45 million possibilities. For each candidate
𝑇𝑅 , we test if whether the start times 𝑇𝑖 of hammering successes
fall within a fixed window relative to the candidate refresh period,
as we describe below.

For each Rowhammer attempt 𝑖 with a starting time 𝑇𝑖 , we
compute the starting time relative to a candidate 𝑇𝑅 period, by
𝑇 ′
𝑖 = 𝑇𝑖 mod 𝑇𝑅 . If we picked the correct value of 𝑇𝑅 , the 𝑇 ′

𝑖 s of
different refresh windows will align, and we will see a well-defined
region of high success rate.
Observing Refresh Periods. Figure 4 shows this effect, repeated
over 8 consecutive refresh periods for the purpose of illustration. For
the correct value of𝑇𝑅 (Figure 4a), Rowhammer attempts that begin
within a well-defined window between consecutive Refresh com-
mands are typically successful, while attempts outside the window
usually fail. For incorrect values of the refresh period (Figures 4b
and 4c), this effect does not happen, as the starting times of suc-
cessful Rowhammer attempts are no longer at the same location
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relative to the (incorrectly guessed) refresh period. The value of 𝑇𝑅
which produces the narrowest regions of high Rowhammer success
rates is thus the correct refresh period.
Identifying the Rowhammer Vulnerable Window. In ad-
dition to computing the refresh rate, Figure 4a also identifies the
vulnerable windows, which correspond to time regions with a high
Rowhammer success rate despite only using ACmin activations.
More specifically, inspecting the gray-shaded areas in Figure 4a,
we observe that there is an interval (𝑎, 𝑏) relative to the refresh
command (dotted line), such that Rowhammer attacks starting
within such an interval have a high likelihood of success. In other
words, the row’s vulnerable window spans all times 𝑥 such that
𝑗𝑇𝑅+𝑎 < 𝑥 < 𝑗𝑇𝑅+𝑏 for some 𝑗 ∈ {0, 1, 2, . . .}, making Rowhammer
attacks performed during the window highly likely to succeed.
A Synchronized Rowhammer. With the locations of Rowham-
mer vulnerable windows in hand, we can now re-examine the
success probability of different values of ACmin across different
flippable bits. Indeed, Figure 5a presents the results of repeating the
experiment of Figure 2, but this time having the Rowhammer at-
tempts be synchronized to the Rowhammer vulnerable windows of
the targeted rows. As can be seen, synchronization with the vulnera-
ble window results in much sharper transitions between failing and
successful Rowhammer attempts, which will significantly denoise
the power signals measured by HammerScope.
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Figure 5: Hammering Success vs. Activation Count (DDR3)

Handling DDR4 Systems. Our technique for identifying the
DIMM’s refresh period and the rows’ vulnerable windows applies
not only to DDR3, but also to newer DDR4 systems. Figure 6 is the
DDR4-3 counterpart of Figure 4a. As can be seen, correct values of
𝑇𝑅 still produce distinct areas of high Rowhammer success rates,
albeit with lower (about 50%) overall success rate compared to DDR3
systems.We hypothesize that this is because the 9-sided hammering
method we used to attack this system was only partially successful
in overcoming the module’s TRR mitigations.
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Figure 6: Finding the Rowhammer vulnerable window on

DDR4

Observing Refresh Periods. Applying our methodology for
finding the refresh period and vulnerable windows to our DDR3
and DDR4 experimental setups, we summarize our findings in Ta-
ble 2. As the table shows, the actual refresh period we measured
was never equal to 64ms, and varied between experiments on the
same machine, depending on the DRAM’s clock rate. Finally, like
Hassan et al. [25], we find that the refresh periods of all of our
DDR4 modules are below 32ms, presumably to protect against
Rowhammer.

DRAM DRAM Refresh Period HammerScope

Module Frequency (ms) Sampling Rate (Hz)

DDR3-1 1066 MHz 63.897672 15.65
DDR3-1 1333 MHz 42.598448 23.47
DDR3-2 1333 MHz 64.045484 15.61
DDR3-3 1400 MHz 42.614029 23.47
DDR3-3 1600 MHz 42.598448 23.47
DDR4-1 2133 MHz 30.529955 32.75
DDR4-2 2400 MHz 30.628924 32.65
DDR4-3 2400 MHz 30.611017 32.67
DDR4-4 2400 MHz 30.558066 32.72

Table 2: Measured refresh periods and corresponding sam-

pling rate across different DRAM configurations.

4.4 Effect of Voltage on ACmin

Having obtained a methodology of accurately evaluating the value
of ACmin for a targeted bit flip, we now proceed in observing how
the value of ACmin changes as the function of the DIMM’s supply
voltage. To that aim, we repeat the experiment of Figure 5a and
intentionally modify the DRAM supply voltage of the system from
1.4V to 1.3V1. For each voltage level, we subsequently measure the
ACmin value across 3 rows, plotting our findings in Figure 5b.

As can be seen in Figure 5b, the value of ACmin for a given row
is directly proportional to the DIMM’s supply voltage, meaning
that less row activations are required for lower voltages in order
to obtain a successful bit flip. Besides indicating that DIMMs are
more flippy when undervolted, the connection between ACmin
and voltage suggests that we can use Rowhammer in order to
1We note here that both 1.3V and 1.4V are technically below the recommended𝑉𝐷𝐷

rating for DDR3, which is 1.425V to 1.575V. However, this undervolted condition was
used only in this section for visual clarity, and all subsequent measurements and
attacks used the recommended voltage range.
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obtain information about the DIMM’s supply voltage. For example,
looking at Figure 5b, attacking row 7413 with 500,000 activations
has a 100% success rate in case 𝑉𝐷𝐷=1.3V, and a 0% success rate if
𝑉𝐷𝐷=1.4V. Thus, by measuring the amount of activations during a
Rowhammer attack on row 7413, the attacker is able to distinguish
between 𝑉𝐷𝐷=1.4V and 𝑉𝐷𝐷=1.3V.

4.5 Constructing HammerScope

Having observed a connection between DIMM supply voltage and
the activation threshold, ACmin, required for a successful Rowham-
mer bit flip, we now describe how we use Rowhammer to measure
the DIMM’s power consumption.
ANaive Attempt. In theory, the most basic method for mounting
HammerScope would be to wait for the next vulnerable window
and start hammering the targeted bit, recording the number of
activation counts until the bit flips. While this method sounds
appealing, the act of reading the bit’s current value also refreshes its
capacitors, thus voiding the efficacy of further activation attempts.
Guess and Record. Instead, the attacker can first choose an
activation count that is slightly higher than ACmin in the idle state.
The attacker then performs a Rowhammer attack synchronized to
the vulnerable window, checking if the targeted bit has flipped after
reaching the chosen activation count. The attacker then records
the outcome, and proceeds with another attack iteration.

The downside of this approach is that it produces binary values.
A successful bit flip indicates that the system is in the idle state,
while a failed bit flip suggests that the DRAM was active.
Closed-Loop Feedback. To further improve HammerScope’s
measurement resolution, we borrow a technique from control the-
ory called Closed-Loop Feedback [14]. Here, the main idea is to
still perform Guess and Record, but adaptively choose the value of
ACmin for the next attack iteration based on the success (or failure)
of the current attack iteration at flipping the targeted bit. As we
essentially track the value of ACmin as it changes through time, this
approach gives us a higher-sensitivity measurement.

More specifically, Figure 7 presents a pseudocode of our ap-
proach. In each iteration of the loop in Line 2, we first set the
targeted victim row to a known state for Rowhammer (Line 3) and
flush it from the CPU cache. We then pause, waiting for the next
vulnerable window (Line 4). Once the vulnerable window time ar-
rives, we perform a Rowhammer attack with a controlled number
of activation_counts (Line 5) and record activation_counts in the
trace. Finally, we check if the Rowhammer attempt was successful,
updating activation_counts accordingly for the next attack iteration
(Lines 7–10).

Using this method, we are essentially tracking the value ofACmin
as it changes over time and use it as a proxy of the DIMM power
consumption level. In particular, the output of this method is not
binary, and allows a significantly finer resolution compared to the
Guess and Record approach.

4.6 Characterizing HammerScope

We now compare HammerScope with power measurements ob-
tained via RAPL and Oscilloscope and discuss HammerScope’s
sampling rate, bandwidth and SNR.

1 l e t a c t i v a t i o n _ c o u n t = AC_START
2 while t r u e :
3 r e s e t _ row ( )
4 wa i t _ f o r_vu lne r ab l e_w indow ( ) / / As e xp l a i n e d in Sec . 4 . 3
5 perform_rowhammer ( a c t i v a t i o n _ c o u n t s )
6 t r a c e . append ( a c t i v a t i o n _ c o u n t s )
7 i f b i t _ f l i p p e d ( ) :
8 a c t i v a t i o n _ c o u n t s −= DELTA
9 e l se :
10 a c t i v a t i o n _ c o u n t s += DELTA

Figure 7: The HammerScope control loop Algorithm.

ComparingHammerScope with RAPL. To show the effective-
ness of our method in measuring DRAM power consumption, we
compare HammerScope results with the DIMM’s power consump-
tion as reported by the RAPL interface. RAPL is a mechanism for
measuring and controlling the power consumption of individual
components of Intel- and ARM-based machines. It provides, among
other things, a real-time direct measurement of the power consump-
tion of the DRAM subsystem, based on high resolution sampling of
the integrated voltage regulator supplying power to DRAM [11, 13].
In this experiment, we run a program that repeatedly writes to
the DRAM for 30 seconds, then remains idle for 10 seconds. We
sample the DRAM power consumption using both the Intel RAPL
interface and the control loop implementation of HammerScope
on our DDR3-1 setup, at a sampling rate 16 Hz. See Figure 8a.

As the figure shows, both RAPL and the HammerScope mea-
surements can accurately capture the DRAM activity. The RAPL
and HammerScope measurements are highly correlated (𝜌 = .97,
𝑝 < .001). Similar results were obtained on our DDR3-3 and DDR4-2
setups. See Figure 8b and Figure 8c respectively.
Comparing HammerScope with Oscilloscope Measurements.

In addition to comparing HammerScope with measurements taken
using the RAPL interface, we have also compared HammerScope
with a direct physical measurement of the DRAM line using an
oscilloscope on our DDR4-4 set up. To this aim, we connected a pas-
sive probe to the DRAM’s𝑉𝑃𝑃 supply line, and sampled the voltage
level using a Picotech PicoScope 3425 deep memory oscilloscope
at a sampling rate of 100 kHz while simultaneously taking both
HammerScope and RAPL measurements. The computer executed
a script which repetitively accessed memory for two seconds, and
then remained idle for two seconds. Since our probe connection was
in parallel to the voltage supply, and not in series, this physical mea-
surement actually measured the transient voltage droops caused by
changes in power consumption, and not the power consumption
directly. To recover the power consumption trace, we applied a dig-
ital band pass filter centered at 33 kHz, followed by a rectifier and a
low-pass filter. The results of this evaluation are shown in Figure 9.
The oscilloscope reading is displayed in relative scale. As the figure
indicates, Rowhammer measurements very accurately track both
RAPL and oscilloscope measurements, albeit at a low sampling rate.
Calculating HammerScope’s Sampling Rate. In order to
execute HammerScope, the attacker performs exactly one measure-
ment per DIMM refresh period, at the previously-identified vulner-
able window. Thus, HammerScope’ sampling rate is determined
by the machines specific memory modules and their configuration,
see Table 2. Among the different memory configurations we tested,
we observed the highest sampling rate of 32.67 Hz (corresponding



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yaakov Cohen et al.

0.5

1

1.5·106

D
RA

M
RA

PL
Δ
J

0 200 400 600 800 1,000
0.5

1

1.5

·106

Time (s)

H
am

me
rS
co

pe
Ac

tiv
at
io
ns

HammerScope
DRAM RAPL

(a) HammerScope vs. RAPL on DDR3-1

4.5

5

·105

H
am

me
rS
co

pe
Ac

tiv
at
io
ns

0 100 200 300 4001

1.5

2

2.5

3·105

Time (s)

D
RA

M
RA

PL
Δ
JHammerScope

DRAM RAPL

(b) HammerScope vs RAPL on DDR3-3

0

0.5

1

H
am

me
rS
co

pe
Su

cc
es
sR

at
e

0 100 200 300 400

4

6

·104

Time (s)

D
RA

M
RA

PL
Δ
JHammerScope

DRAM RAPL

(c) HammerScope vs RAPL on DDR4-2

Figure 8: Comparing HammerScope and RAPL
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Figure 9:HammerScope vs RAPL vs Oscilloscope on DDR4-4

to a 32ms refresh period on DDR4) with the lowest rate being 15.65
(64 ms refresh interval on DDR3). In particular, the doubling of the
DIMM’s refresh rate on DDR4 machines appears to provide for a
higher HammerScope sampling rate, improving the measurement
resolution on modern machines. Finally, we note that while 32.67
Hz is quite a low sampling rate compared to other power analy-
sis primitives, it is still sufficient for mounting attacks on realistic
targets (see Section 5).
EvaluatingHammerScope’s Bandwidth. To characterize Ham-
merScope’s bandwidth (i.e., horizontal accuracy) we executed a
program that repeatedly accesses DRAM and then sleeps for a prede-
termined time, thus generating a square wave signal in the DRAM’s
power consumption. Next, wemeasuredwhether the DRAM’s RAPL
interface and HammerScope were capable of tracking this signal.
Our results indicate that both methods can track periodic signals at
frequencies of up to 4 Hz. At a higher frequency, DRAM does not
have sufficient time to recover from its high-power state, making
both RAPL and HammerScope measurements unreliable.
Characterizing HammerScope’s SNR. To identify Hammer-
Scope’s Signal-to-Noise Ratio (SNR) (i.e., vertical accuracy), we
executed a different test program that alternates between memory
accesses and a controllable number of NOP instructions in a tight
loop. This effectively creates a controlled power consumption us-
ing pulse width modulation (PWM), where the duty cycle of the
modulation is controlled by the ratio between memory accesses
and NOP instructions. Next, we varied the number of activation
counts, while measuring both the Rowhammer success rate and the
actual power level of the DRAM (using RAPL). The results of this
experiment are shown in Figure 10.

In the figure, each circle represents a single experiment out of
1200 in total, and the color of the circle indicates the hammering
success rate, with darker circles representing higher success rates.
As the figure shows, for each given DRAM RAPL value there is
a very sharp threshold value for the activation count, with high
hammering success rates (dark circles) if the activation count is
above this threshold, and nearly no successes (white circles) if it is
below the threshold. In an actual HammerScope attack, an attacker
has control over the activation count (equivalent to being able to
move vertically in the figure), and needs to discover the current
power consumption level of the DRAM (equivalent to discovering
his horizontal position in the figure). In this setting, a measurement
error event will occur only if multiple power consumption levels
share the same hammering threshold. We observed no such cases
in our measurements.
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Figure 10: DRAM RAPL vs Rowhammer success rates on

DDR4 (dark circles indicate success)

4.7 Explaining the Mechanism Behind

HammerScope

Our experimental results indicate that increased DRAM power
consumption decreases the effectiveness of Rowhammer attacks,
allowing HammerScope to indirectly measure DRAM power con-
sumption via Rowhammer. In this section we propose some possible
explanations for our observations, based on the capacitive crosstalk
model, as originally proposed by Kim et al. [30].
Memory Organization. We begin by recalling that DRAM cells
are arranged in a matrix structure, with each DRAM cell containing
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one storage capacitor𝐶𝑆 connected to a bit line (arranged vertically)
through an access transistor. The access transistors are controlled
through word lines (arranged horizontally), which regulate which
transistors open at which times based on the cell being accessed,
as shown in Figure 1. When a word line is activated, the access
transistor is turned on, connecting the storage capacitor to the bit
line. The stored value is detected by a sense amplifier by comparing
the charge stored on the capacitor with a reference voltage.
APhysical Model for Rowhammer. Several theoretical explana-
tions were proposed for Rowhammer in the reliability community,
including electron injection and capture, capacitive crosstalk, or
some combination of the two [59]. According to the capacitive
crosstalk model, the matrix structure of DRAM cell arrays creates
parasitic coupling capacitance between adjacent word lines, see
Figure 11. When the word line of an aggressor row is activated, it
experiences a rapid voltage level transition, from low to high. Due
to capacitive crosstalk, this transition results in a temporary voltage
spike in the word lines of adjacent rows. This spike, in turn, briefly
activates the access transistor of the victim row, unintentionally
causing the cells in this row to leak charge from their storage capac-
itors. Continuous and repetitive activations of the aggressor row
amplify the effect of this unintentional charge leakage from the vic-
tim row. In particular, after ACmin activations, the voltage on one or
more storage capacitors will come close enough to 𝑉𝐷𝐷/2, causing
a bit flip. Examining our results through this lens, we can propose
several models to explain the mechanism behind HammerScope.
The Slew Rate Explanation. As Figure 12 shows, the length of
the parasitic activation on the victim’s word line is dependent on
the rate of change, or slew rate, of the aggressor’s word line. More
specifically, a rapidly-changing aggressor signal will result in a
narrow peak on the victimword line, with relatively high amplitude,
while a slowly-changing aggressor signal will result in a wider
peak with a relatively lower amplitude [58]. If increased DRAM
power consumption causes a faster slew rate on the word lines,
this could explain our experimental observations. Some evidence
in this direction is presented in Chang et al. [9, Figure 5], where
the authors show via simulation that the control lines of a DRAM
module have a slower slew rate when the module is undervolted.
Under this explanation, we conjecture that changes in the DIMM’s
power consumption result in changes to its instantaneous voltage
levels, affecting the slew rate of its control lines and in turn the
effectiveness of Rowhammer. This in turn results in the power-
correlated signal observed by HammerScope.
The Charge Pump Depletion Explanation. Assuming the slew
rate is not affected by DRAM activity, another possible explanation
for the phenomenon we observe considers the instantaneous volt-
age level of the DRAM word line. In DDR3 modules this voltage
rail is generated by an internal charge pump circuitry, while in
DDR4 modules it is provided externally via a dedicated input, 𝑉𝑃𝑃 .
If increased DRAM power consumption causes a temporary volt-
age droop in the charge pump’s output, it would result in a lower
voltage level on the aggressor’s word line. If the slew rate remains
constant, this in turn would result in a smaller peak on the victim
word line, making the victim cells less susceptible to Rowhammer.
Possible support for this explanation, comes from a concurrent
independent work by Yaglikçi et al. [62]. There, [62] measured mul-
tiple DDR4 DRAM chips using an FPGA test board, observing the

Figure 11: Parasitic coupling capacitance between two adja-

cent DRAM cells
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Figure 12: Parasitic coupling and row activation

Rowhammer success rate while maintaining a constant activation
count of 300K and varying the word-line boost voltage rail 𝑉𝑃𝑃 .
They observed that on most of their evaluated chips, decreasing𝑉𝑃𝑃
from its nominal value made the chips more resistant to Rowham-
mer attacks. Under this explanation, we conjecture that changes in
the DIMM’s power consumption result in changes to the level of
its internal word-line boost signal, affecting the amplitude of the
DIMM’s control lines and in turn the effectiveness of Rowhammer.
The DRAM Contention Explanation. A final explanation as-
sumes that both the slew rate and the voltage level are not affected
by the DRAM’s power consumption. Instead, it is possible that
Rowhammer accesses made to an otherwise-idle DRAM system
have a different temporal layout than accesses made to DRAM busy
with simultaneously serving both Rowhammer and other work-
loads. According to this explanation, the way in which Rowhammer-
inducing accesses to the aggressor rows become interleaved with
non-Rowhammer related memory accesses makes them decrease
in potency, making Rowhammer attacks harder. Under this expla-
nation, we conjecture that areas of high DRAM activity, which
indirectly correlate with the DIMM’s power consumption, result in
contention on the DRAM’s control bus which in turn results in less
effective Rowhammer attacks.

With all the above explanations being equally plausible, we leave
the task of systematically exploring the physical reasons behind
HammerScope and Rowhammer to future works.
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4.8 Differentiating Instructions Using

HammerScope

In this section we show how to use HammerScope to measure the
time it takes to execute different instructions, thereby distinguish-
ing between them.
Measurement Technique. We begin by observing that if we
interleave commands which activate the DRAM with commands
which do not activate the DRAM, the overall average DRAM power
consumption will depend on the proportion of the time during
which the DRAM is active, namely the DRAM duty cycle. We use
this property to observe the runtime of instructions executed by
the core, via Rowhammer-based memory measurements. More
specifically, we execute a program which repeatedly activates the
DRAM by accessing uncached addresses, and then subsequently
executes the target instruction. In parallel, on another physical core,
we continuously measure the DIMM’s power consumption using
HammerScope. Instructions that take longer to execute will result
in a lower average duty cycle for the DRAM. This in turn results in
decreased DRAM power consumption. Conversely, an instruction
with a faster execution time results in a higher duty cycle, thereby
increasing DRAM power consumption. Thus, by observing the
DRAM power consumption when various instructions are executed
we are able to distinguish between them.
Differentiating Instruction Types. To demonstrate Hammer-
Scope’s capability of distinguishing between different instruction
types, we used our DDR4-3 setup and repeatedly executed 8 q-word
write operations followed by 16 instances of the instruction being
tested. In parallel, using another physical core, we continuously
took 128 samples of the DIMM’s power consumption using Ham-
merScope. Figure 13 summarizes our findings. As can be seen, we
are able to distinguish between the three different instructions due
to their difference in execution time.
Observing DIV operands. Going beyond distinguishing differ-
ent instructions, we now proceed to demonstrate HammerScope’s
capability to differentiate between different operands of variable
time instructions. To that aim, we focus on the division operation,
that is known to be variable time [55] with known security im-
plications [33]. Demonstrating the ability to distinguish between
division operands, we again used our DDR4-3 setup and again
executed 8 q-word write operations followed by 16 instances of
the division instruction using different operands. More specifi-
cally, we used four different 128-bit dividends and a fixed divisor
0xffffffffffffffff, see Figure 14. As the figure shows, we are
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Figure 14: Observing DIV operands using HammerScope

able to distinguish between the division operations on different
operands.
The Prefetch Command. Prefetch commands [49] allow pro-
grams to indicate to the CPU that a location in memory is likely
to be accessed soon, allowing the CPU to optionally load the ref-
erenced address to cache. As observed by prior works [21, 23, 37]
Prefetch commands are slower if they reference invalid or un-
mapped addresses. This is because translations for invalid addresses
are not stored in the Translation Look-aside Buffer (TLB), requiring
prefetches to such addresses to walk the page table. Conversely,
translations to valid addresses are stored in the TLB even if the page
is not accessible. Consequently, prefetches of valid addresses are
faster than prefetches of invalid addresses, allowing us to observe
this via HammerScope. We now show how HammerScope can be
used as an alternative way of measuring the duration of Prefetch
commands, allowing us to infer the validity of addresses.
Timing PrefetchCommands viaHammerScope. As described
above, Prefetch commands execute slower on invalid or unmapped
addresses, compared to normal addresses. To exploit this, we exe-
cute a program which repeatedly activates DRAM, by reading from
several consecutive uncached addresses, and subsequently executes
a Prefetch command to a targeted address. In parallel, we measure
the DIMM’s power consumption using HammerScope running on
another physical core similar to the previous experiments. Since
the Prefetch command only accesses the memory in the first it-
eration (to actually fetch the target) and not afterwards, longer
execution time for the Prefetch command results in a lower average
duty cycle for the DRAM. This in turn results in decreased DRAM
power consumption. Conversely, a faster execution time for the
Prefetch command results in a higher duty cycle, thereby increasing
DRAM power consumption. As a result, an attacker that measures
the DRAM’s power consumption can deduce the executing time
of the Prefetch instruction, thereby deducing the validity of the
prefetched address.
Measuring Prefetch Commands via HammerScope. Em-
pirically demonstrating this effect, we used our DDR4-2 setup to
capture DRAM RAPL and HammerScope measurements while the
system executes a loop consisting of 8 DRAM memory accesses
and a variable number of repeated executions of Prefetch com-
mands. For the Prefetch address, we targeted both mapped and
unmapped memory addresses. Our results are shown in Figure 15.
Y-axis indicates the average hammering success probability of a
9-sided synchronized Rowhammer attack with a fixed activation
count of 60,000, measured over 32 attempts and the X-axis shows
the Prefetch instruction counts. As the figure shows, there is a
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significant difference in HammerScope behavior between mapped
and unmapped addresses.

5 ATTACKS USING HAMMERSCOPE

Having established the feasibility of using HammerScope to dis-
tinguish instruction types and operands, in this section we demon-
strate how HammerScope can be used to mount end-to-end attacks.

5.1 Distinguishing Mapped and Unmapped

Addresses

We begin by recalling HammerScope’s ability to measure the exe-
cuting time of the Prefetch command, and that the execution time
of Prefetch command depends on whether the address is mapped
or unmapped. In this section we show how we can use this to dis-
tinguish between a mapped and unmapped address. As Figure 15
shows, when a small amount of Prefetch commands is executed in
every loop iteration, the system spends most of the time executing
the DRAM access command, and as a result the power consumption
measurements for the mapped and unmapped memory cases are
similar. However, when the Prefetch command is executed enough
times per iteration, the difference in runtime between the quickly-
terminating Prefetch commands issued to mapped addresses and
the slower Prefetch commands to unmapped addresses manifests
itself through DRAM power consumption.

More specifically, as a result of the high average power levels
when prefetching mapped addresses, Rowhammer attempts per-
formed while prefetching mappedmemory tend to fail. On the other
hand, Rowhammer attempts while prefetching unmapped memory
have a non-zero success rate, as long as enough Prefetch instruc-
tions are issued in a row. As can be seen in Figure 15, Rowhammer
attacks issued when 8 DRAM access commands are interleaved
with 64 Prefetch commands will only succeed if the address being
prefetched is an invalid, unmapped address. This property can be
exploited for side-channel attacks, allowing attackers to bypass
SMAP and ASLR, assuming access to a high resolution timer.
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Figure 15: Timing Instructions with HammerScope

5.2 Attacking KASLR

Address Space Layout Randomization (ASLR) is a mechanism that
protects against code-reuse attacks by randomizing the memory
locations of sensitive code and data [42]. KASLR is the Linux imple-
mentation of ASLR aimed at protecting the kernel by randomizing

the base address of the text segment, which is the segment hold-
ing the code corresponding to the kernel and associated kernel
modules. The text segment of the kernel is mapped to an address
in the range 0xffffffff80800000 to 0xffffffffc0800000, with
a maximum size of 1GB [7]. As observed by [8], the kernel text
segment is aligned to a 2MB boundary, which allows 512 possible
base addresses for the kernel code.
Breaking KASLR using HammerScope. Using HammerScope
ability to distinguish mapped addresses from unmapped addressed
using the Prefetch command, we can attack KASLR from an un-
privileged process, without access to the (now privileged) RAPL
interface or a timing measurement.

For the attack, we use the PREFETCHNTA instruction to re-
peatedly prefetch the first byte of each of the possible base ad-
dresses for the kernel text segment. We run our measurement 512
times, prefetching data from addresses in 2MB intervals within the
range 0xffffffff80800000 to 0xffffffffc0800000. Finally, to
distinguish Prefetch commands to mapped addresses from Prefetch
commands to unmapped addresses, we use the methodology of Sec-
tion 5.1, interleaving the Prefetch commands with memory reads,
and observing the activation threshold for successful bit flips.
Attacking DDR3 Systems. Figure 16 presents the results of
our experiment using our DDR3-3 setup. The X-axis represents the
candidate address for the text segment. To mount HammerScope,
we used eight consecutive Prefetch commands to candidate address,
interleaving these with eight consecutive DRAM accesses. Concur-
rently with the accesses, we performed double-sided Rowhammer,
and recorded the values of ACmin using the control loop method
presented in Section 4.5. As Figure 16 shows, when accessing non-
mapped memory the Prefetch command is slower and, as a result,
the threshold activation count is low. However, when prefetching
an address mapped to the kernel, the Prefetch command completes
faster and resulting in a higher activation count.
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Figure 16: Attacking KASLR using HammerScope on DDR3

Attacking DDR4 Systems. Moving away from DDR3 machines
to DDR4, Figure 17 shows the results of our attack on our DDR4-3.
Here, we used 64 consecutive Prefetch commands to the candidate
address, interleaving these with 8 consecutive DRAM accesses.
Finally, we use 9-sided Rowhammer [17] to overcome the targeted
row refresh countermeasure, experimentally setting the activation
count to threshold to 65,000. We use the HammerScope attack with
the Guess and Record method of Section 4.5, plotting the average
success probability over 50 HammerScope attempts on the Y-axis.
As can be seen in Figure 17, prefetching unmapped addresses results
in high Rowhammer success rate whereas prefetching mapped
addresses result in a very low success rate. Overall, just as in the
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Figure 17: Attacking KASLR using HammerScope on DDR4

DDR3 case, we can clearly identify the value of the kernel base
address, thereby derandomizing KASLR.
Attack Demo. A video demonstrating an end-to-end unprivi-
leged attack on an Intel i7-7700 system with DDR4 memory can be
found in the paper’s artifact repository. The overall attack time is
12:30 minutes, out of which 15 seconds are used for memory alloca-
tion and templating, 3:45 minutes are used for locating vulnerable
rows and calculating the refresh period and the phase, and 8:30 are
dedicated to the attack itself.

5.3 Combining HammerScope and Spectre

Spectre can allow attackers to read out kernel memory in the pres-
ence of a speculative execution gadget in the kernel by using a
cache-based covert channel. To do so, the adversary first locates
a Spectre v1 gadget in the kernel. This gadget performs a bounds-
checked array access (Line 2 of Figure 18), obtaining the value
secret. Finally, the gadget then performs another access (Line 3 of
Figure 18) to an address dependent on the value of secret, thus
leaking secret over a cache-based covert channel.

1 i f ( o f f s e t < a r r a y 1 _ s i z e )
2 s e c r e t = a r r ay1 [ o f f s e t ]
3 temp &= a r r ay2 [ s e c r e t ∗ 5 1 2 ] ;

Figure 18: Spectre v1 Gadget

Using HammerScope for Spectre. We implement a custom
kernel module containing a Spectre v1 gadget similar to the one in
Figure 18, loading it into the Linux kernel, and allowing user-mode
application to control it using ioctl calls. We first call the gadget
with small offset values, aiming to mistrain the branch predictor.
Next, we call the Spectre gadget with an out-of-bounds value for
offset, causing the CPU to speculate past the check in Line 1 of
Figure 18. This speculative execution loads into secret a value from
an attacker-controlled address (Line 2 of Figure 18). Next, when the
speculation reaches Line 3 of Figure 18, a secret-dependent offset
of array2 is loaded into the CPU’s cache. Finally, the CPU discovers
that incorrect speculative execution has occurred, attempts to revert
the outcome, and returns execution using the correct control flow.
A Rowhammer based Covert Channel. Rather than recovering
the value of secret by measuring the access latency of elements of
array2, we use HammerScope to monitor the power consumed by
the gadget’s transient memory accesses. We flush the elements of
array2 one at a time, and then measure the DIMM’s power during
the subsequent transient access to array2’s elements using Ham-
merScope. When we guess the array index correctly, speculatively

accessing the cached array2 element corresponding to the value
of the secret causes a significantly different power consumption
pattern, compared to the rest of array2’s elements, which are not
cached.
Experimental Results. We evaluated this attack on our DDR4-2
setup, using 9-sided Rowhammer attacks with a fixed activation
count of 65,000, using the Guess and Record variant of Hammer-
Scope outlined in Section 4.5. The result of this experiment is shown
in Figure 19. As the figure shows, the Rowhammer success rates are
measurably lower when accessing the (cached) element of array2
corresponding to the value of secret (s in this example), compared
to accessing other (non-cached) elements of array2. Finally, we
acknowledge that using HammerScope as a Spectre covert channel
results in a significantly slower read rate compared to cache-based
channels, taking 8 second per array2 element and about 30 minutes
per byte.
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Figure 19: Reading out kernel memory using Spectre and

HammerScope

5.4 Website Fingerprinting

As a final use case of HammerScope, we show how the ability to
record the DIMM’s power consumption can be use in order tomount
a website fingerprinting attack, where the adversary attempts to
identify the webpage being browsed by the user. Existing works
already showed that power consumption can be used for website
fingerprinting, but these works either assume a vendor-supplied
API, such as the JavaScript Battery API, or the existence of some
external hardware such as a malicious battery or charger [36, 44, 63].
Experimental Setup. We carried out our experiments using
the DDR4-3 setup, equipped with an i7-10700K CPU and running
Firefox version 96.0 for Linux. We collected data in the closed-world
model, which assumes the user visits one of a predetermined set
of 25 websites. The base rate accuracy of a trivial classifier in this
case is 4%. In total, we collected 100 traces for each of the 25 pages,
each trace consisting of 40 seconds of consecutive HammerScope
measurements captured at a sampling rate of 18 Hz while Firefox
was loading the page. Each of the resulting side-channel traces was
a binary vector of length 721. For reference, we also collected DRAM
RAPL traces at the same sampling rate, to serve as an upper bound
on our classifier’s performance. Our data processing pipeline was
based on SKLearn for Python 3.9. We fed the side-channel traces
without any preprocessing into a deep learning network consisting
of 3 convolution and pooling layers, followed by two dense layers
and a final Softmax output layer.We used a ReLU activation function
for all layers, and optimized the network using the Adam optimizer
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with sparse categorical cross-entropy loss. The data was then split
into training and testing sets using stratified 5-fold cross validation.
Classification Results. The accuracy of our classifier was 40%,
well above the base rate of 4%. A classifier trained on the reference
RAPL traces obtained an accuracy of 59%, implying that Hammer-
Scope’s signal quality is not significantly worse than RAPL’s.

6 LIMITATIONS AND COUNTERMEASURES

6.1 Limitations

Low Sampling Rate. One of HammerScope’s main limitations is
its sampling rate of about 15–32 Hz (see Table 2), which is consid-
erably lower than the sampling rates of even low-end oscilloscopes.
HammerScope’s sampling rate does present a significant challenge
for mounting more advanced attacks such as differential power
analysis [31] against side-channel hardened implementations. We
thus leave the task of developing low sampling rate attacks against
hardened implementations to future work.
Low Vertical Accuracy. In addition to its low sampling rate,
HammerScope measurements also suffer from being significantly
less accurate compared to those taken using traditional 8-bit analog-
to-digital converters (ADCs). This means the separation between
energy levels must be big enough in order to allow us to distinguish
them using HammerScope. This requires effort from the attacker,
as instructions being observed must be somehow interleaved be-
tween instructions which cause a high degree of DRAM activity,
see Section 4.8.
Inability to Attack Constant Time Code. While technically
being a power-measurement attacks, HammerScope in its current
form is unable to extract information from constant time instruc-
tions, such as aes-ni, or integer multiplication operations. We
acknowledge this limitation, attributing it to HammerScope’s limi-
tations in both vertical accuracy and sampling rate. We thus leave
the task of extracting information from constant time operations
to future work.
The Need for Code Execution. In its core HammerScope
is a Rowhammer attack, and thus inherits Rowhammer’s threat
model of having (unprivileged) code execution on the target ma-
chine. While this scenario is natural in some cases (e.g., a remote
server), it does present challenges for some devices, such as smart
cards, Hardware Security Modules (HSMs), and proprietary micro-
controllers. This is in contrast to more traditional power analysis
attacks, which merely require passive observation of the target
using external measurement equipment.

6.2 Countermeasures

Since HammerScope measures a physical phenomenon, and does
not rely directly on a manufacturer-provided machine status regis-
ter, it is not trivial to mitigate. To protect against HammerScope
attacks, we must observe the chain of events that make them possi-
ble: First, the machine’s secret behavior is modulated onto its power
consumption; Next, this power consumption affects the suscepti-
bility of DRAM rows to Rowhammer attacks; Finally, an adversary
triggers the Rowhammer attack. To mitigate HammerScope, this
chain must be broken through non-trivial changes to the software
and the underlying hardware.

Constant-PowerCode. To help prevent secret behavior from leak-
ing into a system’s power consumption, writers of security-sensitive
code could consider writing constant-power code, whose power con-
sumption does not depend on the instructions or data being pro-
cessed. While such code is already applied programming devices
considered at risk of power analysis, such as payment cards [41],
we note that HammerScope’s current limitations make attacks on
data challenging. In particular, further improvements seem to be
required in order to obtain HammerScope-based data extraction.

Adding Noise. Another well-known, but slightly less effective,
method trying to prevent side-channel leakage is the random noise
countermeasure, which aims to reduce the signal-to-noise ratio
of the side-channel trace available to the attacker, increasing the
attack time to the point of impracticality. To be applied in this case,
sensitive code can consider intentionally accessing DRAM during
sensitive operations.

Rowhammer Mitigation. The next point of intervention could
be helping to prevent or detect Rowhammer attacks. There is a large
body of work that proposes both software-based and hardware-
based mitigation mechanisms for Rowhammer, as surveyed by
Kim et al. in [29]. Loughlin et al. [40] present a taxonomy which
divides mitigations into three groups: isolation-centric, frequency-
centric and refresh-centric. Kim et al. in [30] suggested increasing
the refresh rate until it is impossible to perform enough activations
within a refresh window to flip a bit. This is becoming increasingly
difficult as miniaturization and power optimization make DRAM
hardware ever more susceptible to Rowhammer attacks. Kim et al.
also proposed PARA, which refreshes one or more adjacent rows
with a low probability every time a row is refreshed. Kim et al. in
[29] implement an ideal refresh mechanism which tracks row acti-
vation and issues a targeted refresh command to a row right before
it can flip a bit. ANVIL [1] detects Rowhammer attacks by tracking
the latency of DRAM access using hardware counters to identify
frequently accessed rows. Brasser et al. implemented CATT [5],
a mechanism which prevents attackers from leveraging Rowham-
mer to corrupt kernel memory from user mode, by using the OS
physical memory allocator to physically isolate between the kernel
and user memory. ProHIT [51] mitigate Rowhammer by using low-
overhead probabilistic tables to maintain DRAM activation history.
Similarly, TWiCe [35] detects Rowhammer attacks using counters
with low performance impact. Panopticon [2] proposes a complete
in-DRAM Rowhammer mitigation by maintaining a counter table
with an activation threshold. GuardION [57] mitigates Rowhammer
exploitation on ARM by isolating DMA buffers with guard rows.
You et al. propose to refresh victim rows using a probability that is
dynamically adjusted based on each row’s access history [64].

7 CONCLUSIONS

In this work we introduced HammerScope, a method for software-
based power analysis using Rowhammer attacks, and showed how
it can be used to compromise secret information in some scenarios.
The Rowhammer attack is unique among fault attacks, since the
actions required to trigger it are purely in the digital domain, while
its impact manifests in the analog domain. This work shows that
the reverse relationship also holds – the analog conditions of the
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system can be sensed using Rowhammer and brought back into the
digital domain.

While we demonstrate some security implications of Hammer-
Scope, we acknowledge that all the attacks presented in this paper
could also be mounted via other channels. We leave the task of
investigation additional HammerScope applications, as well as sys-
tematically analyzing the root cause of HammerScope to future
work.

ACKNOWLEDGMENTS

The authors wish to thank Anatoly Shusterman, Liad Oz, Eilam Gal,
Lucian Cojocar, Ron Anderson, and David Blankenbeckler for their
assistance and advice.

This work was supported by an ARC Discovery Early Career
Researcher Award DE200101577; an ARC Discovery Project number
DP210102670; the Blavatnik ICRC at Tel-Aviv University; the Air
Force Office of Scientific Research (AFOSR) under award number
FA9550-20-1-0425; the National Science Foundation under grant
CNS-1954712; and gifts from AMD, Intel, and Qualcomm.

REFERENCES

[1] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd M. Austin. 2016. ANVIL: Software-Based
Protection Against Next-Generation Rowhammer Attacks. In ASPLOS. 743–755.
https://doi.org/10.1145/2872362.2872390

[2] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. 2021. Panopticon:
A Complete In-DRAM Rowhammer Mitigation. In DRAMSec. https://dramsec.
ethz.ch/papers/panopticon.pdf

[3] Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti, Shih-Lien Lu, and Bruce L. Ja-
cob. 2016. DRAM Refresh Mechanisms, Penalties, and Trade-Offs. IEEE Trans.
Computers 65, 1 (2016), 108–121. https://doi.org/10.1109/TC.2015.2417540

[4] Sarani Bhattacharya and Debdeep Mukhopadhyay. 2016. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis. In CHES.
602–624. https://doi.org/10.1007/978-3-662-53140-2_29

[5] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. CAn’t Touch This: Software-only Mitigation against
Rowhammer Attacks targeting Kernel Memory. In USENIX Security. 117–
130. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/brasser

[6] Giovanni Camurati, Sebastian Poeplau, Marius Muench, TomHayes, and Aurélien
Francillon. 2018. Screaming Channels:When Electromagnetic Side ChannelsMeet
Radio Transceivers. In CCS. 163–177. https://doi.org/10.1145/3243734.3243802

[7] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In CCS. 769–784. https://doi.org/10.1145/3319535.3363219

[8] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In AsiaCCS. 481–493.
https://doi.org/10.1145/3320269.3384747

[9] Kevin K. Chang, Abdullah Giray Yaglikçi, Saugata Ghose, Aditya Agrawal, Ni-
ladrish Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O’Connor, Hasan
Hassan, and Onur Mutlu. 2017. Understanding Reduced-Voltage Operation in
Modern DRAM Devices: Experimental Characterization, Analysis, and Mech-
anisms. Proc. ACM Meas. Anal. Comput. Syst. 1, 1 (2017), 10:1–10:42. https:
//doi.org/10.1145/3084447

[10] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploit-
ing Correcting Codes: On the Effectiveness of ECCMemory Against Rowhammer
Attacks. In IEEE SP. 55–71. https://doi.org/10.1109/SP.2019.00089

[11] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: memory power estimation and capping. In ISLPED. 189–194.
https://doi.org/10.1145/1840845.1840883

[12] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer
Attacks from JavaScript. In USENIX Security. 1001–1018. https://www.usenix.
org/conference/usenixsecurity21/presentation/ridder

[13] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A Validation
of DRAM RAPL Power Measurements. In MEMSYS. 455–470. https://doi.org/10.
1145/2989081.2989088

[14] Steven A. Frank. 2018. Control Theory Tutorial. Springer International Publishing.
[15] Jeffrey Friedman. 1972. Tempest: A signal problem. NSA Cryptologic Spectrum 2,

3 (1972). https://www.nsa.gov/portals/75/documents/news-features/declassified-
documents/cryptologic-spectrum/tempest.pdf

[16] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Grand
Pwning Unit: Accelerating Microarchitectural Attacks with the GPU. In IEEE SP.
195–210. https://doi.org/10.1109/SP.2018.00022

[17] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the Many Sides of Target Row Refresh. In IEEE SP. 747–762. https:
//doi.org/10.1109/SP46214.2022.9833664

[18] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic
Analysis: Concrete Results. In CHES. 251–261. https://doi.org/10.1007/3-540-
44709-1_21

[19] Daniel Genkin, Noam Nissan, Roei Schuster, and Eran Tromer. 2022. Lend Me
Your Ear: Passive Remote Physical Side Channels on PCs. In USENIX Security.
4437–4454. https://outflux.net/slides/2013/lss/kaslr.pdf

[20] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my
laptop: physical side-channel key-extraction attacks on PCs - Extended version.
J. Cryptogr. Eng. 5, 2 (2015), 95–112. https://doi.org/10.1007/s13389-015-0100-7

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In ESSoS. 161–176.
https://doi.org/10.1007/978-3-319-62105-0_11

[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell,Wolfgang Schoechl, and Yuval Yarom. 2018. Another Flip in theWall of
Rowhammer Defenses. In IEEE SP. 245–261. https://doi.org/10.1109/SP.2018.00031

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In CCS. 368–379. https://doi.org/10.1145/2976749.2978356

[24] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript. In DIMVA. 300–321. https:
//doi.org/10.1007/978-3-319-40667-1_15

[25] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh
Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection
Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implica-
tions. In MICRO. 1198–1213. https://doi.org/10.1145/3466752.3480110

[26] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. In SysTEX. 5:1–5:6. https:
//doi.org/10.1145/3152701.3152709

[27] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
2022. BLACKSMITH: Scalable Rowhammering in the Frequency Domain. In IEEE
SP. 716–734. https://doi.org/10.1109/SP46214.2022.9833772

[28] Yichen Jiang, Huifeng Zhu, Dean Sullivan, Xiaolong Guo, Xuan Zhang, and Yier
Jin. 2021. Quantifying Rowhammer Vulnerability for DRAM Security. In DAC.
73–78. https://doi.org/10.1109/DAC18074.2021.9586119

[29] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikçi, Hasan Hassan, Roknoddin
Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting RowHammer: An Experi-
mental Analysis of Modern DRAM Devices and Mitigation Techniques. In ISCA.
638–651. https://doi.org/10.1109/ISCA45697.2020.00059

[30] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
ISCA. 361–372. https://doi.org/10.1109/ISCA.2014.6853210

[31] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In CRYPTO. 388–397. https://doi.org/10.1007/3-540-48405-1_25

[32] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double: Ham-
mering from the Next Row Over. In USENIX Security. 3807–3824. https://www.
usenix.org/conference/usenixsecurity22/presentation/kogler-half-double

[33] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-
Origin Pixel Stealing: Timing Attacks Using CSS Filters. In CCS. 1055–1062.
https://doi.org/10.1145/2508859.2516712

[34] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:
Reading Bits in Memory Without Accessing Them. In IEEE SP. 695–711. https:
//doi.org/10.1109/SP40000.2020.00020

[35] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2019.
TWiCe: Preventing Row-hammering by Exploiting Time Window Counters. In
ISCA. 385–396. https://doi.org/10.1145/3307650.3322232

https://doi.org/10.1145/2872362.2872390
https://dramsec.ethz.ch/papers/panopticon.pdf
https://dramsec.ethz.ch/papers/panopticon.pdf
https://doi.org/10.1109/TC.2015.2417540
https://doi.org/10.1007/978-3-662-53140-2_29
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://doi.org/10.1145/3243734.3243802
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3320269.3384747
https://doi.org/10.1145/3084447
https://doi.org/10.1145/3084447
https://doi.org/10.1109/SP.2019.00089
https://doi.org/10.1145/1840845.1840883
https://www.usenix.org/conference/usenixsecurity21/presentation/ridder
https://www.usenix.org/conference/usenixsecurity21/presentation/ridder
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://doi.org/10.1109/SP.2018.00022
https://doi.org/10.1109/SP46214.2022.9833664
https://doi.org/10.1109/SP46214.2022.9833664
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://outflux.net/slides/2013/lss/kaslr.pdf
https://doi.org/10.1007/s13389-015-0100-7
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1145/3466752.3480110
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1109/SP46214.2022.9833772
https://doi.org/10.1109/DAC18074.2021.9586119
https://doi.org/10.1109/ISCA45697.2020.00059
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/3-540-48405-1_25
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1145/3307650.3322232


HammerScope: Observing DRAM Power Consumption Using Rowhammer CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[36] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit
Tiwari, and Mark Silberstein. 2018. Power to peep-all: Inference Attacks by
Malicious Batteries on Mobile Devices. PoPETs 2018, 4 (2018), 141–158. https:
//doi.org/10.1515/popets-2018-0036

[37] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks
through Power and Time. In USENIX Security. 643–660. https://www.usenix.org/
conference/usenixsecurity22/presentation/lipp

[38] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based
Power Side-Channel Attacks on x86. In IEEE SP. 355–371. https://doi.org/10.1109/
SP40001.2021.00063

[39] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss. 2020. Nethammer: Inducing Rowhammer
Faults through Network Requests. In EuroS&P Workshops. 710–719. https://doi.
org/10.1109/EuroSPW51379.2020.00102

[40] Kevin Loughlin, Stefan Saroiu, Alec Wolman, and Baris Kasikci. 2021. Stop!
Hammer Time: Rethinking our Approach to Rowhammer Mitigations. In HotOS.
88–95. https://doi.org/10.1145/3458336.3465295

[41] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer.

[42] Hector Marco-Gisbert and Ismael Ripoll Ripoll. 2019. Address space layout
randomization next generation. Applied Sciences 9, 14 (2019), 2928. https://doi.
org/10.3390/app9142928

[43] Colin O’Flynn and Alex Dewar. 2019. On-Device Power Analysis Across Hard-
ware Security Domains. Stop Hitting Yourself. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2019, 4 (2019), 126–153. https://doi.org/10.13154/tches.v2019.i4.126-153

[44] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Díaz. 2015. The
Leaking Battery - A Privacy Analysis of the HTML5 Battery Status API. In
DPM/QASA at ESORICS. 254–263. https://doi.org/10.1007/978-3-319-29883-2_18

[45] Yossef Oren and Adi Shamir. 2007. Remote Password Extraction from RFID Tags.
IEEE Trans. Computers 56, 9 (2007), 1292–1296. https://doi.org/10.1109/TC.2007.
1050

[46] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAMAddressing for Cross-CPUAttacks. In
USENIX Security. 565–581. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl

[47] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.
In USENIX Security. 1–18. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/razavi

[48] Falk Schellenberg, Dennis R. E. Gnad, AmirMoradi, andMehdi Baradaran Tahoori.
2018. An inside job: Remote power analysis attacks on FPGAs. In DATE. 1111–
1116. https://doi.org/10.23919/DATE.2018.8342177

[49] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. 2021.
Speculative dereferencing of registers: Reviving Foreshadow. In FC. 311–330.
https://doi.org/10.1007/978-3-662-64322-8_15

[50] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer
bug to gain kernel privileges. https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html. (2015).

[51] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM Stronger Against Row Hammering. In DAC. 55:1–55:6. https://doi.org/10.
1145/3061639.3062281

[52] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Defeating
Software Mitigations Against Rowhammer: A Surgical Precision Hammer. In
RAID. 47–66. https://doi.org/10.1007/978-3-030-00470-5_3

[53] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuf-
frida, Herbert Bos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer
Attacks over the Network and Defenses. In USENIX ATC. 213–226. https:
//www.usenix.org/conference/atc18/presentation/tatar

[54] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G. Shin.
2022. SpecHammer: Combining Spectre and Rowhammer for New Speculative
Attacks. In IEEE SP. 681–698. https://doi.org/10.1109/SP46214.2022.9833802

[55] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In CCS.
178–195. https://doi.org/10.1145/3243734.3243822

[56] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. 2016. Drammer: Deterministic Rowhammer Attacks on Mobile Plat-
forms. In CCS. 1675–1689. https://doi.org/10.1145/2976749.2978406

[57] Victor Van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Pad-
manabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. 2018. GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks
on ARM. In DIMVA. 92–113. https://doi.org/10.1007/978-3-319-93411-2_5

[58] VLSI System Design Corporation. 2017. Effect of Coupling Capacitance. (2017).
https://www.vlsisystemdesign.com/effect-of-coupling-capacitance/

[59] Andrew J.Walker, Sungkwon Lee, and Dafna Beery. 2021. On DRAMRowhammer
and the Physics of Insecurity. IEEE Transactions on Electron Devices 68, 4 (2021),
1400–1410. https://doi.org/10.1109/TED.2021.3060362

[60] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas Eisen-
barth, and Berk Sunar. 2020. JackHammer: Efficient Rowhammer on Heteroge-
neous FPGA-CPU Platforms. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3
(2020), 169–195. https://doi.org/10.13154/tches.v2020.i3.169-195

[61] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation.
In USENIX Security. 19–35. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/xiao

[62] Abdullah Giray Yaglikçi, Haocong Luo, Geraldo F. de Oliviera, Ataberk Olgun,
Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S. Kim, Lois Orosa, and Onur
Mutlu. 2022. Understanding RowHammer Under Reduced Wordline Voltage:
An Experimental Study Using Real DRAM Devices. In DSN. 475–487. https:
//doi.org/10.1109/DSN53405.2022.00054

[63] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran S. Balagani.
2017. On Inferring Browsing Activity on Smartphones via USB Power Analysis
Side-Channel. IEEE Trans. Inf. Forensics Secur. 12, 5 (2017), 1056–1066. https:
//doi.org/10.1109/TIFS.2016.2639446

[64] Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-hammering
Based on Memory Locality. In DAC. 19. https://doi.org/10.1145/3316781.3317866

[65] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom. 2020. PThammer: Cross-User-Kernel-Boundary Rowhammer through
Implicit Accesses. In MICRO. 28–41. https://doi.org/10.1109/MICRO50266.2020.
00016

[66] KennethM. Zick, Meeta Srivastav,Wei Zhang, andMatthew French. 2013. Sensing
Nanosecond-Scale Voltage Attacks and Natural Transients in FPGAs. In FPGA.
101–104. https://doi.org/10.1145/2435264.2435283

https://doi.org/10.1515/popets-2018-0036
https://doi.org/10.1515/popets-2018-0036
https://www.usenix.org/conference/usenixsecurity22/presentation/lipp
https://www.usenix.org/conference/usenixsecurity22/presentation/lipp
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1109/EuroSPW51379.2020.00102
https://doi.org/10.1109/EuroSPW51379.2020.00102
https://doi.org/10.1145/3458336.3465295
https://doi.org/10.3390/app9142928
https://doi.org/10.3390/app9142928
https://doi.org/10.13154/tches.v2019.i4.126-153
https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1109/TC.2007.1050
https://doi.org/10.1109/TC.2007.1050
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.1007/978-3-662-64322-8_15
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1145/3061639.3062281
https://doi.org/10.1145/3061639.3062281
https://doi.org/10.1007/978-3-030-00470-5_3
https://www.usenix.org/conference/atc18/presentation/tatar
https://www.usenix.org/conference/atc18/presentation/tatar
https://doi.org/10.1109/SP46214.2022.9833802
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1007/978-3-319-93411-2_5
https://www.vlsisystemdesign.com/effect-of-coupling-capacitance/
https://doi.org/10.1109/TED.2021.3060362
https://doi.org/10.13154/tches.v2020.i3.169-195
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://doi.org/10.1109/DSN53405.2022.00054
https://doi.org/10.1109/DSN53405.2022.00054
https://doi.org/10.1109/TIFS.2016.2639446
https://doi.org/10.1109/TIFS.2016.2639446
https://doi.org/10.1145/3316781.3317866
https://doi.org/10.1109/MICRO50266.2020.00016
https://doi.org/10.1109/MICRO50266.2020.00016
https://doi.org/10.1145/2435264.2435283

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Artifact Availability and Responsible Disclosure

	2 Background
	2.1 DRAM
	2.2 Rowhammer
	2.3 Power Analysis

	3 Attack Model and Experimental Setup
	4 HammerScope
	4.1 Establishing the Activation Threshold
	4.2 Observing System Activity
	4.3 Reducing Noise
	4.4 Effect of Voltage on ACmin
	4.5 Constructing HammerScope
	4.6 Characterizing HammerScope
	4.7 Explaining the Mechanism Behind HammerScope
	4.8 Differentiating Instructions Using HammerScope

	5 Attacks Using HammerScope
	5.1 Distinguishing Mapped and Unmapped Addresses
	5.2 Attacking KASLR
	5.3 Combining HammerScope and Spectre
	5.4 Website Fingerprinting

	6 Limitations and Countermeasures
	6.1 Limitations
	6.2 Countermeasures

	7 Conclusions
	Acknowledgments
	References

