
Inner Conflict: How Smart Device Components Can Cause Harm

Omer Shwartz, Amir Cohen, Asaf Shabtai, Yossi Oren
Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 8410501 Israel.

Abstract

Mobile smart devices are built of smaller components that are often fabricated by third-parties, and not by the device
manufacturers themselves. Components such as sensors, radio transceivers, and touchscreen controllers are generally
supplied to the manufacturers, along with driver software that facilitates communication between the component and the
host device. Driver software is normally embedded within the operating system kernel, where it is trusted to behave
within defined parameters. Since the hardware of the smart device is expected not to change frequently, the device driver
source code implicitly assumes that the hardware of the component is authentic and trustworthy. Such trust permits
driver designs with a lax approach towards the integrity and security of data exchanged between the main processor and
the hardware component.

In this paper, we question this trust in hardware components. Smart devices such as phones are often repaired with
replacement components. Identifying and authenticating the source of these components is usually very difficult. We
assume the threat consists of a malicious replacement touchscreen procured from an untrusted vendor. We construct two
standalone attacks based on malicious touchscreen hardware. Our experiments demonstrate that these attacks allow an
adversary to impersonate and eavesdrop on a user, exfiltrate data, and exploit the operating system, enabling the execution
of privileged commands. For mitigating these and other similar attacks, we build and evaluate a machine-learning,
hardware-based countermeasure capable of detecting abnormal communications with hardware components.

Keywords: Computer security, Privacy, Reverse engineering, Smart devices.

1. Introduction

Smart devices and gadgets can break or malfunction
and often require repair. A common example is the smart-
phone which is easily dropped, resulting in a shattered
touchscreen. According to a 2015 study, over 50% of global
smartphone owners have damaged their phone screen at
least once, and 21% of global smartphone owners are cur-
rently using a phone with a cracked or shattered screen [1].
While phones with broken touchscreens may be repaired at
phone vendor-operated facilities such as Apple Stores, it
is often more convenient and cost-effective for phone users
to use third-party repair shops. Some technically savvy
users may even purchase touchscreen replacement kits from
online marketplaces such as eBay and perform the repair
themselves. These types of unofficial repairs tend to include
the cheapest possible components, and thus may introduce,
knowingly or unknowingly, counterfeit components into the
phone.

Replaceable components, including phone touchscreens,
batteries or various sensors, are seldom produced by the
phone manufacturers themselves. Instead, original equip-
ment manufacturers (OEMs) such as Synaptics, MediaTek

Email address: omershv@post.bgu.ac.il,
amir3@post.bgu.ac.il, shabtaia@bgu.ac.il, yos@bgu.ac.il.
(Omer Shwartz, Amir Cohen, Asaf Shabtai, Yossi Oren)

and Maxim Integrated provide these components, as well
as the device driver source code, to phone manufacturers
who integrate the components into their phones. The man-
ufacturers then integrate this device driver source code
into their own source code, making slight adjustments to
account for minor differences between device models, such
as memory locations, I/O bus identifiers, etc. These minor
tweaks and modifications make the process of creating and
deploying patches for such device drivers a very difficult
endeavor, as we discuss further in Section 2. The example
in Figure 1 illustrates this setting. The smartphone’s main
logic board runs a specific OEM code (the device driver)
that communicates with the touchscreen over the internal
bus using a common, simple interface. Even hardened,
secure, or encrypted phones, such as those used by govern-
mental and law enforcement agencies, often use commercial
operating systems and a driver architecture that follows
the same paradigm [2].

An important observation we make is that the device
drivers (written by the OEMs and slightly modified by
the phone manufacturers) exist inside the phone’s trust
boundary. In contrast to drivers for “pluggable” peripherals
such as USB accessories, these OEM drivers assume that
the internal components they communicate with are also
inside the phone’s trust boundary. We observe, however,
that these internal components actually belong outside

Preprint submitted to Elsevier October 26, 2019

of the smartphone’s trust boundary. Indeed, there are
some hundreds of millions of smartphones with untrusted
replacement screens. This inherent dissonance underlies
our research questions: How might a malicious replacement
peripheral abuse the trust given to it by its device driver?
How can we defend against this form of abuse?

Hardware replacement is traditionally considered a
strong attack model, under which almost any attack is
possible. However, in our case, we add an important re-
striction to this model: we assume that only a specific
component, with an extremely limited hardware interface,
is malicious. Furthermore, we assume that the repair tech-
nician installing the component is uninvolved. One can as-
sume that these limitations make this attack vector weaker
than complete hardware replacement; we show that it is
not. Given the hundreds of millions of devices satisfying
these assumptions in the wild [1], this form of abuse poses
a significant danger.

While composing this paper, we have searched for alle-
gations or reports of hardware implants in smartphones in
public news sources. Despite our efforts could find none.
This is unsurprising, and can be attributed to the highly
directed and covert nature of these attacks, which are
most likely to be mounted by nation-state attackers against
targets who are either unaware of the attacks, or highly
interested in suppressing reports about them.

In this work we highlight the risk of counterfeit or
malicious components in the consumer setting, where the
target is the user’s privacy, personal assets, and trust.
We show how a malicious touchscreen can record user
activity, take control of the phone and install apps, direct
the user to phishing websites and exploit vulnerabilities
in the operating system kernel in order to gain privileged
control of the device. Since the attack is carried out by
malicious code running from the CPU’s main code space,
the result is a fileless attack, which cannot be detected by
anti-virus software, leaves no lasting footprint and survives
firmware updates and factory resets. We also propose a
method for designing a flexible and generic countermeasure
that may help protect against such attacks.

Our paper makes the following contributions:

1. We explore the risk of malicious peripheral attacks
on consumer devices and argue that this avenue of
attack is both practical and effective.

2. We detail recent events and analyses in regard to
allegations of malicious hardware implants discovered
in deployed severs and investigate the similarities to
the attack model described in this paper.

3. We describe two attacks that form building blocks
that can be used in a larger attack: a touch injec-
tion attack that allows the touchscreen to imperson-
ate the user, and a buffer overflow attack that lets
the attacker execute privileged operations. We imple-
ment both of these attacks on two Android devices
assembled by different manufacturers.

4. Combining the two building blocks, we also present

a series of end-to-end attacks that can severely
compromise a stock Android phone with standard
firmware. We implement and evaluate three different
attacks, using an experimental setup based on a low-
cost microcontroller embedded in-line with the touch
controller communication bus. These attacks can:
Impersonate the user - By injecting touch events
into the communication bus, an attacker can perform
any activity representing the user. This includes in-
stalling software, granting permissions and modifying
the device configuration; Compromise the user -
An attacker can log touch events related to sensitive
operations such as lock screen patterns, credentials or
passwords. An attacker can also cause the phone to
enter a different state than the one expected by the
user by injecting touch events. For example, we show
an attack that waits until a user enters a URL for a
website and then stealthily modifies the touch events
to enter a URL of a phishing website, thereby caus-
ing the user surrender his or her private information;
Compromise the phone - By sending crafted data
to the phone over the touch controller interface, an
attacker can exploit vulnerabilities within the device
driver and gain kernel execution capabilities.

5. We make a case for a hardware-based countermea-
sure that listens to or intercepts communications
over a hardware interface and monitors for anoma-
lies. We implement such a countermeasure using
machine learning techniques, and evaluate it against
the attacks demonstrated. The evaluation shows a
true-positive rate of 100% with a false-positive rate
of 0% over a detection period of 0.2 seconds.

The rest of this paper is structured as follows. Section 2
reviews related work on smart device malware and hard-
ware attacks. We summarize some of the current state
of malicious hardware implants in Section 3. We explore
the attack model in detail in Section 4, including a sur-
vey of the attack surface along with the reasoning behind
the proposed countermeasure. In Sections 5, 6, and 7,
we demonstrate the attacks described above. Section 8
describes the implemented countermeasure and its effec-
tiveness against the attacks. Finally, our work is concluded
in Section 9.

2. Related Work

Throughout the relatively short history of smartphones,
both smartphone malware and smartphone protection mech-
anisms have evolved drastically as the smartphone plat-
form grew popular. Android malware in particular has
been shown to utilize privilege escalation, siphon private
user data and enlist phones into botnets [3]. Bickford et
al. [4] address the topic of smartphone rootkits, defining a
rootkit as “a toolkit of techniques developed by attackers
to conceal the presence of malicious software on a com-
promised system”. A rootkit’s malicious activities include

2

SmartphoneSmartphone

Main Logic Board

Touchscreen

Main CPU

Aux. CPUAux. Memory

Main Memory

I2C Bus

OEM Code

Figure 1: The smartphone, its touch screen, and its associated device
driver software.

wiretapping into phone calls, exfiltration of positioning
information and battery exhaustion denial of service. They
can be detected with dynamic or static techniques [5].

Hardware interfaces have recently been the subject of
concern for security researchers in the personal computer
setting, due to their involvement in highly privileged pro-
cesses [6]. Hardware components enjoying Direct Memory
Access (DMA) such as the Graphics Processing Unit (GPU)
can implant malware within the kernel memory [7]. Ladakis
et al. [8] demonstrate a GPU-based keylogger where the
GPU abuses its DMA capabilities for monitoring the key-
board buffer inside the kernel memory and saving keystroke
information to the GPU memory. Brocker et al. [9] use
the firmware update functionality of a MacBook iSight
camera for installing malicious firmware on the camera.
The authors showed how their own firmware could be used
to take photos discretely or videos, without turning on the
indicator light that informs the user that the camera is in
use. Additionally, the authors use their firmware for enu-
merating the camera as a USB keyboard and present the
ability of the enumerated device to escape virtual machine
confinement.

When considering vulnerabilities emerging from hard-
ware interfaces, some prior research has focused on ex-
ternal hardware interfaces such as USB. Wang et al. [10]
performed an extensive study on the exploitation of smart-
phones via trusted profiles such as the Human Interface

Device (HID), as well as through undocumented capabili-
ties. Yang et. al [11] used power analysis techniques on a
smartphone’s USB connection to detect and classify touch
screen activity, allowing them to infer browsing activity
through this channel.

Most of the existing work dealing with internal hardware
interfaces focused on hardware components that can either
be updated by the user or easily replaced. Compared to
PCs, smartphones are more monolithic by design, with a
static hardware inventory and components that can only
be replaced with matching substitutes. The smartphone
operating system contains device firmwares that can only
be updated alongside the operating system. Thus, there has
been far less research emphasis on smartphone hardware,
based on the assumption that it cannot be easily replaced
or updated and is therefore less exposed to the threats
discussed above. We challenge this assumption, noting
that smartphone components are actually replaced quite
frequently and often with non-genuine parts, as we show
in Section 4.

The trouble that accompanies counterfeit components
has not been completely ignored by the mobile industry
(e.g., the “error 53” issue experienced by some iPhone users
after replacing their fingerprint sensors with off-brand ones
and failing validity checks [12]), however, it seems that
such validity checks are not widely accepted, as counterfeit
replacement components usually pass unnoticed. The risk
of counterfeit components was also raised in the national
security setting in a National Institute of Standards (NIST)
draft, with an emphasis on supply chains [13]. Indeed,
counterfeit assemblies or components are a key point of
concern for the hardware industry [14].

A factor that hinders development of standard meth-
ods for counterfeit components is device customization.
Android device customization security hazards have been
systematically studied by Zhou et al. [15]. The authors
designed a tool, ADDICTED, that detects customization
hazards. The authors raised the concern that the cus-
tomizations performed by manufacturers can potentially
undermine Android security. In a previous work [16] we
focused on driver customizations, reviewing the source code
of 26 Android phones and mapping the device drivers that
are embedded in the kernel of their operating system. Our
survey found a great deal of diversity in OEMs and device
drivers. Each phone contained different driver software, and
there were few common device drivers among the phones
tested. This landscape makes it difficult to patch, test, and
distribute fixes for vulnerabilities found in driver code.

In the wider context of smartphone security, several
works [17, 18, 19] have investigated the potential harm
to user privacy by OEM and third party code, such as
advertisement and analytics libraries. In contrast to these
works, which address third-party code running as part of
applications with user-level permission, we discuss here
OEM code in drivers, which has kernel-level permissions
and therefore carries a higher security risk.

3

3. Alleged Hardware Implants Reported

On October 4th, 2018, an article titled “The Big Hack:
How China Used a Tiny Chip to Infiltrate U.S. Companies”
was published in the Bloomberg Businessweek website [20].
The article described a malicious hardware implant of Chi-
nese origin, as small as a grain of rice, that was found
in electronic boards used in servers deployed in datacen-
ters. According to Bloomberg, “The attack by Chinese
spies reached almost 30 U.S. companies, including Amazon
and Apple, by compromising America’s technology supply
chain, according to extensive interviews with government
and corporate sources”. Bloomberg also claimed that the
affected companies discovered and reported these implants
to U.S. authorities.

3.1. Responses
The report from Bloomberg was quickly met with skepti-

cism and denial, a response article published by The Wash-
ington Post under the title “Your move, Bloomberg” [21]
called for Bloomberg to provide more information while
reaching out to the allegedly attacked companies and pub-
lishing their responses. The responses quoted of Amazon
and Apple included a complete denial of any knowledge
of hardware modification or implants in their datacenters.
Later on, some of the companies even called for Bloomberg
to retract the article [22].

While the equipment manufacturer Supermicro’s stock
lost over 40 percent of its value [23], the security community
remained conflicted and confused about whether these
attacks happened and if such an implant can actually be
manufactured, installed and maintain effectiveness without
being detected.

3.2. Properties of the Implant
The Bloomber article described the hardware implant as

smaller than a grain of rice and also not being a part of the
original board design. Additionally, Bloomberg provided
a drawing showing the implant’s location on the mother-
board. Security researchers [24] proposed that based on the
drawing, the implant was disguised as a passive component
near the Flash memory chip containing the firmware for
the BMC (Baseboard Management Controller).

The BMC is an integrated circuit (IC) that is responsi-
ble for the management of various resources of the electronic
board and usually have direct access to other processors
and their memory as well a network connection. Com-
promising the BMC can mean compromising the whole
system.

A typical BMC, such as the one installed in the moth-
erboards examined, makes use of an SPI (Serial Peripheral
Interface) Flash chip to hold its firmware. Subverting the
SPI Flash or it’s communication lines is equal to modifying
the BMC firmware.

3.3. Feasibility of an Implant
Security researcher Trammel Hudson investigated if

such an implant can be manufactured and would it have
any ability to disrupt and spy on the motherboard [25]. In
his work, Hudson addresses several key issues contesting
such an implant:

1. The ability to change the board behavior - by an-
alyzing finding unencrypted portions in the BMC
firmware Hudson showed how a simple modification
to the firmware resulted in execution of arbitrary
code in the BMC.

2. Initiating a change from a small physical footprint -
by inserting his implant instead of a resistor on the
motherboard, Hudson gained the ability to intercept
data sent from the SPI Flash to the BMC and nullify
bits on demand. Hudson also showed how these
capabilities are sufficient for making useful changes
to the firmware loaded to the BMC.

3. Manufacturing of a component small enough to avoid
detection - Hudson showed how a modern microcon-
troller core is smaller than a standard surface mount
resistor and therefore can be embedded within it.

3.4. Review and Limitations
A malicious implant in hardware, similar to the one

reported by Bloomberg has the capacity for doing great
damage. It benefits from the trust components have in
embedded systems and also from simple interfaces such as
SPI and Inter Integrated Circuit (I2C) buses that facilitate
communication between components.

The replacement of components is also demonstrated
in projects such as the TPMGenie [26] where a malicious
implant hijacks the I2C bus between a CPU and a Trusted
Platform Module (TPM) thus disabling a crucial level of
security used in encryption and verification.

These attacks are limited by their requirement for access
to the victim device during manufacturing or transport. In
the rest of this paper we investigate how these attacks can
be performed on an already deployed device by targeting
replaceable units of hardware.

4. Our Attack Model

Counterfeit components have been in existence ever
since the dawn of the industrial age. When tampered with,
their effectiveness as attack vectors is also well known.
What, then, is unique about the particular setting of a
smartphone? We argue that our specific attack model
is a unique restriction the hardware replacement attack
model: we assume that only a specific component, with an
extremely limited hardware interface, is malicious, while the
rest of the phone (both hardware and software) can still be
trusted. Furthermore, we assume that the repair technician
installing the component does not have malicious intent,
and won’t perform any operations beyond replacing the

4

original component with a malicious one. One can assume
that these limitations make this attack vector weaker than
complete hardware replacement, however, we show that
this is not the case, demonstrating that the nature of
the smartphone ecosystem makes this attack model both
practical and effective. Our attack model is particularly
dangerous, given that there are hundreds of millions of
devices in the wild that satisfying these assumptions.

The pervasiveness of untrusted components in the smart-
phone supply chain was investigated in September 2016 by
Underwriters Laboratories (UL) [28]. UL researchers ob-
tained 400 iPhone charger adapters from multiple sources
in eight different countries around the world, including the
U.S., Canada, Colombia, China, Thailand, and Australia,
and discovered that nearly all of them were counterfeit
and contained sub-standard hardware. Similarly, in Octo-
ber 2016, Apple filed a lawsuit against Amazon supplier
Mobile Star LLC, claiming that “Apple, as part of its on-
going brand protection efforts, has purchased well over
100 iPhone devices, Apple power products, and Lightning
cables sold as genuine by sellers on Amazon.com [...and]
revealed that almost 90% of these products are counter-
feit.” [29]. Considering the condition of the third-party
marketplace, one can assume with high confidence that un-
less a phone has been repaired at a vendor-operated facility
such as an Apple Store, it is likely to contain counterfeit
components.

4.1. Malicious Peripherals
Let us next assume that a malicious peripheral, such

as a touchscreen, has made it into a victim’s smartphone.
What sort of damage can it cause?

As stated in [16, 30], attacks based on malicious hard-
ware can be divided into two different classes. First-order
attacks use the standard interaction modes of the compo-
nent, but do so without the user’s knowledge or consent. In
the specific case of a malicious touchscreen, the malicious
peripheral may log the user’s touch activity or imperson-
ate user touch events in order to impersonate the user for
malicious purposes. We demonstrate some of these attacks
in Section 5. Second-order attacks go beyond exchanging
properly-formed data, and attempt to cause a malfunction
in the device driver and compromise the operating system
kernel. Such an attack requires that the peripheral send
malformed data to the CPU, causing the device driver to
malfunction and thereby compromise the operating sys-
tem kernel. Once the kernel is compromised, it is possible
to disable detection and prevention of suspicious system
activity, eavesdrop on sensors and on other applications,
and most significantly, operate on systems where only a
partial software stack has been loaded, such as a device in
a charging, standby, or off state [31, 32, 15, 33, 34].

While first-order attacks don’t rely on the presence of
a software vulnerability and can be performed by any ma-
licious peripheral contained in consumer electronics, the
existence of a vulnerability that can be exploited is a pre-
requisite of second-order attacks. Similar attacks performed

by malicious pluggable peripherals (e.g., USB peripherals),
to compromise a smartphone have been demonstrated [35].
A review of 1077 Android CVEs (Common Vulnerabilities
and Exposures) patched between August 2015 and April
2017 shows that at least 29.5% (318 items) take place in
the device driver context [27]. Figure 2 shows the growth
in driver related CVEs.

Driver vulnerabilities are often detected in the pluggable
setting where the driver controls a peripheral that might
be detached or replaced by the user. This leads to a
general lack of attention to the internal component setting.
We argue that it is very likely that internal components
might be used to exploit vulnerabilities just like pluggable
components are known to do. In this paper we describe two
such vulnerabilities that we found in common touchscreen
drivers (Synaptics S3718 and Atmel T641).

4.2. Case Study - Touch Controller Communications
In most smartphones, the touch controller communi-

cates with the device driver residing on the host processor
via a dedicated I2C bus [36], a general purpose, low speed
bus designed for cost effective communication between ICs.
The I2C bus behaves as a physical layer between master
and slave devices, where master devices are allowed to read
and write from and to registers in the slave device’s mem-
ory. By manipulating these registers, the device driver,
acting as master, can control the behavior of the touch
controller, acting as slave. In the other direction, the touch
controller can send events to the device driver by populat-
ing the appropriate registers and triggering an interrupt.
On top of this low-level communication interface, the de-
vice driver typically defines a proprietary layer required for
the instrumentation and operation of the touch controller.

In the Nexus 6P phone, the Synaptics S3718 touch
controller daughter board has I2C connections to the host
processor. It has an additional contact for generating
an interrupt signal notifying the host processor of touch-
related events. The I2C bus operates at the rate of 400
Kbps.

A basic mapping of the touch controller registers and
functions was extracted from the open source device driver
made available by Google. Additional reverse engineering
and observation provided a fuller picture of the communi-
cation protocol.

4.2.1. Boot up process
During the boot up process, the device driver probes

the touch controller memory and learns which functions
the controller possesses. A controller function or capability
is reported through a six byte function descriptor. The
function descriptor contains four register addresses used for
manipulating the function, along with an interrupt count
that signifies the number of interrupt types the function
generates. A mapping of several controller functions can
be seen in Table 1. After probing and querying for the
functions, the device driver checks the firmware installed

5

Figure 2: The percentage of patched Android CVEs that occur in driver context out of all patched Android CVEs. The figure was compiled
using information from the Android Security Bulletins [27]. On May 2017, changes to the Android Security Bulletins website format decreased
the amount of information given, rendering the context on many CVEs uncertain.

Table 1: Partial mapping of the main Synaptics S3718 functions and their purpose

Function
ID

Query
Address

Command
Address

Control
Address

Database
Address

Function Purpose

0x01 0x3F 0x36 0x14 0x06 General control and status of the touch
controller

0x12 0x5C 0x00 0x1B 0x08 Reporting of simple touch events,
including multi-finger touches

0x51 0x04 0x00 0x00 0x00 Firmware update interface

6

Figure 3: The complete attack setup. The figure shows an exposed
touch controller interface wired to a prototyping board embedded with
auxiliary electronics and connected to an Arduino microcontroller
module. The prototyping board is also connected to an STM32L432
microcontroller module [37] which is used as a countermeasure. Inset:
wires soldered onto the touch controller communication connection

against the firmware file embedded in the kernel memory
and triggers a firmware update if necessary. Eventually,
the device driver enables the appropriate handlers for all
function specific interrupts and writes the configuration
data to the relevant functions.

4.2.2. Touch reporting
In order to generate a touch event, the touch controller

electrically pulls the interrupt line to the ground and thus
notifies the device driver of an incoming event. The de-
vice driver in turn reads the interrupt register 0x06 and
deduces which of the touch controller functions generated
the interrupt. In the case of a normal touch event this will
be function 0x12. The device driver continues to read a
bitmap of the fingers involved in this event from register
0x0C and eventually reads register 0x08 for a full inventory
of the touch event.

4.3. Attack Setup
The attacks were demonstrated on a Huawei Nexus 6P

smartphone running the Android 6.0.1 operating system,
build MTC19X, and operating with stock manufacturer
firmware; in addition, the phone has been restored to
factory state with a memory wipe using the “factory data
reset” feature in the settings menu.

The touchscreen assembly was separated from the rest
of the phone and the touch controller daughter board was

located. Using a hot air blower on the connection between
the touch controller daughter board and the main assembly
daughter board we were able to separate the boards and
access the copper pads. The copper pads were soldered to
thin enameled copper wire that was attached to a proto-
typing board. Using this setup, we were able to simulate a
chip-in-the-middle scenario in which a benign touchscreen
has been embedded with a malicious integrated chip that
manipulates the communication bus. Fig 3 shows the entire
attack setup.

Our attack used a commonly available Arduino plat-
form [38] based on the ATmega328 microcontroller. A
setup such as the one described above can easily be scaled
down in size by a factory or skilled shop in order to fit
on the touchscreen assembly daughter board. ATmega328,
the programmable microcontroller used in our attacks, is
available in packages as small as 4x4x1 mm [39]. Other,
more powerful microcontrollers are available with smaller
footprints of 1.47x1.58x0.4 mm or less [40]. Since the data
sent by our attack fully conforms to layers 1 and 2 de-
scribed in the I2C specification, it can also be implemented
in the firmware of the malicious peripheral’s internal mi-
crocontroller, removing the need for additional hardware
altogether.

4.4. Applicability to Other Phone Models and Operating
Systems

An analysis of other recent Android phones: Google
Pixel 3 and Essential PH-1, suggests that similar architec-
tures and practices are still shared among the majority of
phone models.

The two phones analyzed use either I2C or SPI buses to
communicate with a multitude of peripherals such as wire-
less charger, power management, NFC, speaker amplifier,
battery management and touchscreen.

Additional analysis of the driver source code revealed
usage of unsafe programming practices such as the use of
unrestricted memory copy functions. A few potential bugs
and one minor security flaw were also found and are being
communicated to the vendors.

5. First-Order Attacks

First-order attacks take advantage of peripherals’ capa-
bilities and abuse the trust they are afforded by the user
or other components of the system. In this section, we
demonstrate and evaluate several such attacks.

5.1. Touch Logging and Injection Attacks
In this attack, the malicious microcontroller eavesdrops

on user touch events (touch logging) and injects generated
ones into the communication bus (touch injection). The mi-
crocontroller software behind the phishing attack shown in
Table 2 is built of three components: two state machines,
one maintaining a keyboard mode and the other main-
taining a typing state, and a database that maps screen

7

Table 2: A summary of the first-order attacks demonstrated.

Attack Time to Execute Screen
Blanked?

Video Demo

Malicious software
installation

21 seconds Yes https://youtu.be/83VMVrcEOCM

Take picture and send via
email

14 seconds Yes https://youtu.be/WS4NChPjaaY

Replace URL with
phishing URL

<1 second No https://youtu.be/XZujd42eYek

Log and exfiltrate screen
unlock pattern

16 seconds Yes https://youtu.be/fY58zoadqMA

regions to virtual keyboard buttons. The state machine
that maintains the keyboard modes changes state when a
keyboard mode switch key had been pressed. The basic
Nexus 6P keyboard has four modes: English characters,
symbols, numbers, and emoji. The typing state machine
is used for tracking the typed characters and matching
them to specified trigger events (such as typing in a URL).
Complex context information, such as keyboard orienta-
tion, language, activity, and even user identity, has been
shown to be detectable from low-level touch events by other
authors [41, 42, 43, 44]. When the required trigger event
is reached, touch injection begins and a set of generated
touch events is sent on the communication line. Our cur-
rent hardware is capable of generating touch events at a
rate of approximately 60 taps per second.

5.2. User Impersonation and User Compromise
The touch logging and injection capabilities shown can

be extended and used for a variety of malicious activities.
Since our attack model assumes a malicious touchscreen
assembly, the attacker can turn off power to the display
panel while a malicious action is performed, allowing most
attacks to be carried out stealthily.

The first attack we demonstrate is the malicious soft-
ware installation attack. As illustrated in the video, this
attack installs and starts an app from the Google Play
Store. By using Android’s internal search functionality,
the attacker can type in the name of the Play Store app
instead of searching for it onscreen, making our attack
more resilient to users who customize their graphical home
screens. It is important to note that the attack can install
an app with arbitrary rights and permissions, since the
malicious touchscreen can confirm any security prompt
displayed by the operating system. This attack takes less
than 30 seconds and can be performed when the phone is
unattended and when the screen is powered off.

Next, we show how the malicious touchscreen can take
a picture of the phone’s owner and send it to the at-
tacker via email. As seen in the video, this attack activates
the camera and sends a ’selfie’ to the attacker. This attack
also takes less than 30 seconds and can be performed while
the display is turned off, allowing the attack to be carried
out without the user’s knowledge.

Our third attack shows how the malicious screen can
stealthily replace a hand-typed URL with a phishing
URL. As the video shows, this attack waits for the user
to type a URL, then quickly replaces it with a matching
phishing URL. The confused user can then be enticed to
type in his or her credentials, assuming that a hand-typed
URL is always secure. This attack takes less than one
second but requires that the screen is turned on and the
user is present, thus risking discovery. We note that the
demonstrated attack setup has a typing speed of over 60
characters per second.

Our fourth attack shows how the malicious screen can
log and exfiltrate the user’s screen unlock pattern
to an online whiteboard website. The video demonstrates
how the attack records the user’s unlock pattern and draws
it on an online whiteboard, which is shared via the Internet
with the attacker’s PC. This attack demonstrates both
the collection and the infiltration abilities of the attack
vector. This attack also takes less than 30 seconds, and its
exfiltration step can also be performed while the screen is
turned off.

Table 2 summarizes the attacks discussed above.

6. Second-Order Attacks

Second-order attacks are attacks that exploit weak-
nesses in the system that are unintentionally exposed to
the peripherals. The examples presented in this section
show how software vulnerabilities, such as buffer overflows,
can be leveraged in this fashion.

6.1. Arbitrary Code Execution Attacks
This attack exploits vulnerabilities in the touch con-

troller device driver embedded within the operating system
kernel in order to gain arbitrary code execution within the
privileged kernel context. A chain of data manipulations
performed by the malicious microcontroller causes a heap
overflow in the device driver that is further exploited to
perform a buffer overflow.

6.1.1. Design
As a part of the boot procedure, the device driver

queries the functionality of the touch controller. We discov-
ered that by crafting additional functionality information

8

https://youtu.be/83VMVrcEOCM
https://youtu.be/WS4NChPjaaY
https://youtu.be/XZujd42eYek
https://youtu.be/fY58zoadqMA

we can cause the device driver to discover more inter-
rupts than its internal data structure can contain, causing
a heap overflow. Using the heap overflow we were able
to further increase the amount of available interrupts by
overrunning the integer holding that value. Next, an in-
terrupt was triggered causing the device driver to request
an abnormally-large amount of data and cause a buffer
overflow. The buffer overflow was exploited using a Return
Oriented Programming (ROP) [45] chain designed for the
ARM64 architecture.

6.1.2. Implementation
When triggered, the malicious microcontroller shuts

down power to the touch controller and begins imitat-
ing normal touch controller behavior. During the boot
sequence, the malicious microcontroller emulates the mem-
ory register image of the touch controller and responds
in the same way to register writes using a state machine.
When probed for function descriptors in addresses higher
than 0x500 that normally do not exist within the touch con-
troller, the microcontroller responds with a set of crafted
function descriptors designed to cause the interrupt reg-
ister map to exceed its boundaries. Within the device
driver, a loop iterates over the interrupt register map and
writes values outside the bounds of an interrupt enable
map, causing the integer holding the number of interrupt
sources to be overwritten. After waiting 20 seconds for
the boot procedure to complete, the microcontroller ini-
tiates an interrupt by pulling the interrupt line to the
ground. The device driver, which should then read up to
four interrupt registers, instead reads 210 bytes, causing
a buffer overflow, a ROP chain that calls the Linux ker-
nel function mem_text_write_kernel_word() that writes
over protected kernel memory with a chosen payload resides
within the 210 bytes requested from the touch controller.
Table 3 contains additional information about the ROP
chain.

6.1.3. Evaluation
Four different payloads were demonstrated on top of

the ROP chain described above and tested in attack sce-
narios on a phone with stock firmware and factory-restored
settings and data.

Each of the four payloads succeeded in compromising
the phone’s security or data integrity. A list of the tested
payloads is as follows:

• Disable all user capability checks in setuid() and
setgid() system calls. This allows any user or app
to achieve root privileges with a simple system call.

• Silently incapacitate the Security Enhanced Linux
(SELinux) [46] module. While SELinux will still
report blocking suspicious activity, such activity will
not actually be blocked.

• Create a user exploitable system-wide vulnerability.
The buffer check is disabled for all user buffers on sys-

tem calls, resulting in many different vulnerabilities
exploitable through many techniques.

• Create a hidden vulnerability within the kernel. A
specific kernel vulnerability is generated, functioning
as a backdoor for a knowledgeable attacker while
remaining hidden.

6.1.4. Attacks on additional devices
While the main attack demonstrated here is crafted for

the Nexus 6P phone, many other phones use similar device
drivers [16]. A small scale review performed by the authors
on three additional phones that contain a Synaptics touch
controller (Samsung Galaxy S5, LG Nexus 5X, LG Nexus
5) show that these phones have similar vulnerabilities to
the ones exploited in the attack described here.

To further demonstrate the generality of our attack
method, we extended it to another target device with a
different hardware architecture. The device we investigated
was an LG G Pad 7.0 (model v400) tablet. This device
runs the Android 5.0.2 operating system and contains a
different touchscreen controller than the Nexus 6P phone.

An STM32L432 microcontroller module was connected
to the communication lines belonging to the touch con-
troller, and the original touch controller daughter board
was disconnected. The microcontroller was programmed
to replay previously recorded responses of a genuine touch
controller. Inspection of the device driver revealed unsafe
buffer handling in numerous locations. By falsely reporting
an abnormally large entity, the malicious microcontroller
was able to cause the device driver to read 2048 bytes from
the bus into an 80-byte global array. The buffer overflow af-
fected kernel memory and resulted in the overrun of various
internal pointers and eventually a crash.

While the attack shown in this section is not complete,
these preliminary results show how the complete attacks
shown in Sections 5 and 7 can be implemented on additional
devices with different peripherals.

In addition, the similarity in different peripheral im-
plementations makes adapting existing attacks to new pe-
ripherals easier. For example, after reverse engineering the
touch reporting mechanism of the Atmel touch controller,
the Synaptics touch injection attack can be copied onto
to devices with an Atmel touch controller, even without
discovering any vulnerability in the Atmel device driver.

7. End-to-End Attacks

While each of the attacks described in Section 5 poses
a threat on their own, a combination of these attacks along
with second-order attacks can lead to an even more powerful
outcome.

The final attack presented completely compromises the
phone, disables SELinux, and opens a reverse shell con-
nected to a remote attacker. This attack is unique in that
it requires an exploitable bug in the third-party device
driver code. We describe this attack in more detail in the

9

Table 3: ROP chain designed for the ARM64 architecture. This chain results in a call to a predefined function with two arguments.

Gadget
Order

Gadget Code Relevant Pseudocode

1 ldp x19, x20, [sp, #0x10]; ldp x29, x30, [sp],
#0x20; ret;

Load arguments from stack to registers
X19 and X20

2 mov x2, x19; mov x0, x2; ldp x19, x20, [sp,
#0x10];

ldp x29, x30, [sp], #0x30; ret;

Assign X2 := X19; load arguments from
stack to registers X19 and X20

3 mov x0, x19; mov x1, x20; blr x2; ldp x19, x20,
[sp, #0x10];

ldr x21, [sp, #0x20]; ldp x29, x30, [sp],
#0x30; ret;

Assign X0 := X19; assign X1 := X20; call
X2(X0, X1)

Table 4: A demonstration of a complete end-to-end attack.

Attack Time to execute Screen Blanked? Video Demo
Complete phone compromise 65 seconds Yes https://youtu.be/sDfD5fJfiNc

following subsection and provide additional information in
Table 4.

7.1. Phone Compromise
To completely compromise the phone, we use a combi-

nation of touch events and driver exploits, as illustrated
in Figure 4: First, the attacker uses touch injection to
install an innocent-looking app from the Google Play app
market. The next time the phone restarts, the malicious
microcontroller initiates kernel exploitation during the
boot sequence and creates a vulnerability in the kernel that
is exploitable by app. Once the phone completes booting,
the previously installed app uses the vulnerability created
by the microcontroller to take control of the system and
perform malicious activity. The malicious app then reboots
the phone and the now-compromised phone resumes normal
activity.

7.2. Attack Implementation
For this demonstration, a user app was created and up-

loaded to the Google Play app market. The app starts when
the phone boots up, and performs a series of system calls
by writing to the pesudo-file “/prof/self/clear_refs”.
While the phone is in a normal state, these system calls
cause no issues and shouldn’t raise suspicion. During the
exploitation of the kernel by the malicious microcontroller,
the actions of the pesudo-file “/prof/self/clear_refs”
are modified, and a vulnerability is introduced to it. This
causes a change in the behavior of the app which is now able
to exploit that vulnerability and execute code in the kernel
context. We note that since the app is designed to exploit a
vulnerability that is non-existent under normal conditions,
it appears completely benign when a malicious screen is
not present. This enabled our app to overcome malware
filters and detectors, including Google Play’s gatekeeper,
Google Bouncer.

Once the app has gained the ability to execute com-
mands with kernel permissions, it elevates privileges to

root, deactivates the SELinux protection module, exfil-
trates private application data and authentication tokens,
submits the data to an online server, and finally, creates a
root shell enabling an attacker to gain remote access. A
video demonstration of the attack is available via the link
in Table 4.

8. Countermeasure

A countermeasure that efficiently protects against the
demonstrated attacks while not hindering development and
production needs to have certain attributes. It needs to
be able to detect threats quickly while remaining cheap,
generic, and easy to implement. Additionally, it must not
be affected greatly by mechanisms such as software updates
which may damage its detection capabilities.

In order to protect the phone from a malicious replace-
ment component, we propose implementing a low-cost,
hardware-based solution in the form of an I2C interface
proxy firewall. Such a firewall can monitor the communi-
cation of the I2C interfaces and protect the device from
attacks originating from the malicious component.

The new hardware component can be physically located
in-line, on the path between the component and the OEM
code running on the CPU (as shown in Figure 5) and thus
can modify or block malicious communication. Another
alternative is that the component does not interrupt the
path between the untrusted component and the OEM code
running on the CPU, but rather passively monitors the
traffic without modifying it. This may allow the use of
lower-cost components with only a single monitoring port
and lower clock rates, since the component does not have
to operate at the line speed. In another possible implemen-
tation of the solution, the firewall is not implemented as an
individual hardware component, but rather as independent
software modules running on the primary CPU.

The use of a hardware countermeasure allows for pro-
tection against both inserted malicious components and

10

https://youtu.be/sDfD5fJfiNc

Malicious Screen
1

Android Play Store

Malicious

App

Malicious

App

(3) App Installed in User Space

Victim Phone

New Vuln.

(5) App Exploits Vuln.,

Launches Full Attack

Play Store

App

Figure 4: Fully compromising the phone using a malicious touchscreen.

User Device

Main Logic Board

Auxiliary Board

Main CPU

Aux. CPU
Aux.

Memory

Main
Memory

I2C
Firewall

Internal Bus

OEM Code

User Device

Main Logic Board

Auxiliary Board

Main CPU

Aux. CPU
Aux.

Memory

Main
Memory

I2C
Firewall

Internal Bus

OEM Code

Figure 5: I2C on path (left) and off path (right) firewall.

modified firmware attacks. It may also detect malicious
behavior of firmware code that was modified by an insider
and therefore still be signed or encrypted.

This proposed solution implements common firewall
functionality such as signature matching, anomaly detec-
tion, filtering and rate limiting. Each data packet traveling
between the component and the CPU, and vice versa, will
be analyzed by the I2C interface firewall. When the traffic
traveling between the I2C and CPU is detected as mali-
cious, the firewall can block this traffic and thus protect the
integrity of the CPU (if implemented inline as presented in
Figure 5). In addition, the firewall can send a signal to the
CPU or reset the CPU, thus returning it to a safe state.

8.1. Motivation
The unique attack model we discuss in our paper al-

lows us to “fight hardware with hardware”. While software
countermeasures are capable of performing analysis of the
contents of data packets, they are blind to variations in
the implementation of the physical protocols. Hardware
components have the ability to sense changes in the physi-
cal layer of the protocol, such as cadence, delays, voltages

or even electronic interference. Many of these character-
istics are unique for each family of microcontrollers, and
a great deal of effort to is required to mimic or copy such
characteristics in a different device.

Performing intrusion detection using hardware finger-
printing had previously been shown to be effective on more
complex communication buses such as Controller Area
Network (CAN bus) [47].

A hardware implementation allows for a transparent
solution where the firewall component does not modify or
influence the behavior of OEM-supplied code. Robustness
is also achieved where when the firmware of the component
or the OEM-supplied code has been updated, the firewall
does not need to be modified or replaced. In addition, the
hardware implementation can be developed to be generic at
the interface level. An implementation of the firewall for the
I2C interface can be applied with little or no modifications
to different devices and components communicating using
the specific interface.

Such hardware implant can even be designed in a way
that is agnostic and unaware of the type and function of
the untrusted hardware peripheral. The implementation
described and evaluated in the following subsections relies
on data transmission statistics to create a model of normal
communication and discover anomalies while being unaware
of the type of peripheral it is guarding. Agnostic design
also facilitates large scale implementation where a single
design can be used in multiple hardware configurations.

8.2. Analysis
In our research, we focus on protecting against chip-in-

the-middle or chip replacement attack scenarios where the
main CPU interacts with a malicious microcontroller.

The design of our countermeasure was motivated by the
anticipated slight variations in communication properties
between different microcontrollers and implementations.
While any microcontroller capable of I2C should comply
with the standard, the standard does allow some imple-
mentational freedom so as to maintain robustness. In
chip-in-the-middle scenarios, the CPU communicates di-
rectly with the malicious chip and the activities on their

11

of samples Max Median Mean Std
SDA rise
time (µs)

252296 2.8 1.6 1.4 0.5

Inter-frame
delay (µs)

12042 26.4 24.4 24.7 0.4

Message
length
(bytes)

12019 74 3 5.7 10.2

Inter-
message

delay (µs)

12017 - 288.4 466441 4521765.2

(a) Data collected during phone boot (unmodified phone)

of samples Max Median Mean Std
SDA rise
time (µs)

141370 2.4 1.6 1.4 0.5

Inter-frame
delay (µs)

6935 25.4 25 24.9 0.3

Message
length
(bytes)

6926 8 2 4 2.8

Inter-
message

delay (µs)

6924 - 457.2 19145.5 140717.6

(b) Data collected while using the touchscreen (unmodified phone)

of samples Max Median Mean Std
SDA rise
time (µs)

2038 1.8 1.6 1.6 0.2

Inter-frame
delay (µs)

114 3494.6 24.2 955.6 1327.4

Message
length
(bytes)

80 74 3 6.7 12.5

Inter-
message

delay (µs)

79 - 3548.4 97373.3 595202.5

(c) Data collected during normal boot (chip-in-the-middle scenario)

of samples Max Median Mean Std
SDA rise
time (µs)

7815 1.8 1.6 1.6 0.2

Inter-frame
delay (µs)

527 2833.8 24.2 240.4 744.3

Message
length
(bytes)

505 8 2 3.9 2.8

Inter-
message

delay (µs)

504 - 3397.2 53320.6 322301

(d) Data collected during touch injection (chip-in-the-middle scenario)

Table 5: Statistics of the collected features from an unmodified phone operating under normal conditions (a,b) and from a phone with a
malicious chip replacement to the touch screen controller (c,d).

Figure 6: Differences in SDA rise time patterns for benign touch
interactions (12294 samples) and chip-in-the-middle touch injections
attack (7815 samples) scenarios. The differences originate from
architectural differences between the malicious microcontroller and
the original touch controller.

communication bus is expected to differ than when the
malicious chip is absent.

In order to explore the differences in communication
between the original controller and our malicious microcon-
troller, we connected a Saleae Logic Pro 8 logic analyzer
and recorded the communication bus in both scenarios at
a sampling rate of 5,000,000 samples per second.

Differences were observed and recorded between the
communications in both scenarios. Notably, some of the dif-
ferences were the result of the micro-architectural difference
between the original controller and our micro-controller.
The features observed are described below:

• SDA rise time after clock signal - this measures the
elapsed time between a clock signal generated by the
I2C master device to the toggle of the SDA signal
by the I2C slave device. Since our bus operates at
400,000 bits-per-second, the SDA rise time can be as
high as 2.5µs. Due to the sampling frequency, values
slightly above 2.5µs were also recorded. This feature
is determined by the micro-architecture of the slave.
An example of the difference between this parameter
on different micro-controllers can be seen in Fig. 6.

• Inter-frame delay - this measurement shows the elapsed
time between consecutive frames in I2C messages.
While this parameter is usually determined by the
I2C master as the master controls the clock and rate of
data transfer, the slave may employ clock stretching
to delay its response, thus prolonging the inter-frame
time. Usage of clock stretching is determined by
the micro-architecture of the slave along with the
software operating on it.

• Message length - the length of each transmitted mes-
sage, in bytes.

• Inter-message delay - this measurement shows the

12

elapsed time between consecutive I2C messages. while
the time difference between messages is governed
by the I2C master, the master may be driven into
sampling the slave at a certain rate by the slave,
depending on the protocol.

Table 5 shows gathered statistics of these features. The
samples were collected from 150 boot cycles of an unmodi-
fied phone along with several hundreds of touch events.

The table show how architectural features, such as
the SDA rise time and inter-frame time, do not differ
between operation modes while data-related features, such
as message length and inter-message time, have small but
significant differences.

8.3. Design

input : A sliding window W containing N I2C
bytes

output : A classification ∈ (benign, malicious) of
the data

parameter : N - Size of the sliding window
parameter : t - Tolerance for benign classifications
parameter : OMSRT - observed median of SDA rise

time
parameter : OSSRT - observed standard deviation of

SDA rise time
parameter : OMIF D - observed median of inter-frame

delay
parameter : OSIF D - observed standard deviation of

inter-frame delay
parameter : OMML - observed maximal message

length
MSRT ← median of SDA rise time in W ;
SSRT ← standard deviation of SDA rise time in W ;
MIF D ← median of inter-frame delay in W ;
SIF D ← standard deviation of inter-frame delay in W ;
MML← maximal observed message length in W ;
if MML > OMML then

return malicious;
end
values← {(MSRT, OMSRT), (SSRT, OSSRT),
(MIF D, OMIF D), (SIF D, OSIF D))};

foreach (val, observed) ∈ values do
if val < observed * (1-t) or val > observed * (1+t)
then

return malicious;
end

end
return benign;

Algorithm 1: Detection of communications done by a
malicious implant using micro-architectural and behavior
differences.

Using the collected statistics of the features, a simple
statistics-based classifier can be employed to detect anoma-
lous behavior that points to a change in the I2C slave
micro-architecture or behavior. The algorithm for such
classification can be seen in Algorithm 1.

The parameters required for the calibration and oper-
ation of the detection algorithm can be determined and
programmed during the production of the whole device,
or learned by the countermeasure during a brief learning
period. During the collection of data from 150 device
boots and several hours of touch interactions, the recorded
statistics did not deviate from a baseline established at the
beginning of the experiment, suggesting that the statistics
are very well constant under time, and that the learning
period can be as short as several minutes.

8.4. Evaluation
An effective countermeasure is expected to discriminate

between benign and malicious scenarios with a low rate of
error. In the case of a hardware countermeasure that is
integrated in critical hardware paths, error rates should be
negligible.

We indicate an evaluation for such countermeasure to
be successful if it provides a zero false-positive malicious
identification rate along with safe and explainable margins
for classification of new and unknown samples.

8.4.1. Implementation
A separate microcontroller module was attached parallel

to the I2C bus and interrupt line of the touch controller.
The microcontroller monitors the communication between
the touch controller and the host processor, and issues
alerts if it detects anomalous behavior.

An STM32L432 microcontroller module was connected
to the SDA, SCL, and INTR lines of the touch controller.
Patterns and frequencies of I2C communications were recorded
under various usage scenarios by decoding the signals ac-
cording to the I2C protocol. Due to the simple nature of the
communication protocol between the host processor and
the touch controller, the patterns had very little variance.
Additionally, the maximum I2C message length represents
the largest normal register read and never exceeds a certain
value. Afterwards, the same setup was used for recording
the attacks described in this paper.

The recorded data was then divided into two data
sets as seen in Table 6. The training set was used to
determine the baseline and threshold for detection and
the test set was input to a script executing the algorithm
described in Algorithm 1 for evaluation using a sliding
window methodology.

8.4.2. Selection of detection parameters
The detection algorithm relies on the windows size to

maximize TPR and minimize FPR. A window size too
small increases noise and results in misdetections while a
windows size too large can cause the algorithm to ignore
small anomalies. The window size selection was done by
analyzing the behavior of the device under normal settings
(as described in the training set in Table 6) while inferring
the minimal transaction size for an activity. In our case
we notice that a full boot sequence involves the transfer

13

Data set
name

Activities recorded Size in
bytes

(benign)

Size in
bytes

(malicious)

Amount of
overlapping

windows
(N=400)

Amount of
distinct
windows
(N=400)

Training
set

Phone boot sequence (benign),
touch interactions (benign) 134714 0 134315 336

Test set

Phone boot sequence (benign),
touch interactions (benign), phone

boot with a chip-in-the-middle
(malicious), exploitation through

phone boot (malicious), touch
injection (malicious)

128676 13127 141404 354

Table 6: Detection model evaluation data sets

of 1089 bytes and that a 0.2 seconds simple touch event is
indicated by the transfer of 420 bytes. The window size
chosen for this experiment was N = 400.

In order to select parameters for successful detection
of threats, a baseline was established by observing the
statistics generated on the training set using the window
size previously determined.

Setting a window size of N = 400 and a threshold values
of SSRT = 0.22, t = 0.55 yields an FP rate of FPR = 0%
when evaluating the test set.

Other parameters can be determined similarly by ob-
serving statistics gathered from benign data. This method
could also possibly be developed to be performed auto-
matically during a learning period of the countermeasure
device’s life.

8.4.3. Detection of first-order attacks
When evaluated on the test set, the algorithm correctly

detected all of the windows involving first-order attacks
using the parameters of N = 400 and t = 0.55. In addition,
no benign windows were mis-classified in the test set. Con-
sidering the minimal data transaction duration and size
determined previously, we conclude that a successful detec-
tion of a chip-in-the-middle scenario can be done within 0.2
seconds while maintaining TPR = 100% and FPR = 0%.

8.4.4. Detection of second-order attacks
This attack was performed using a malicious chip im-

plant that replaced the original touch controller in the
same way that was done in the demonstration of first-order
attacks. The fact that the micro-architectural differences
between the benign and test setup remains lead to the
successful classification of the attack using the same pa-
rameters from the last Subsubsection.

In addition to micro-architectural based detection, it
is worth mentioning that the second-order attack demon-
strated in Section 6 injects an abnormally large amount of
data using the I2C bus, this allows for the simple classifica-
tion done in line 6 of Algorithm 1. Using frame size for de-
tection allows the countermeasure to maintain FPR = 0%

over any windows size, but it relies on the exploitation to
require an amount of data that exceeds normal transac-
tions.

8.4.5. Detection of the complete end-to-end attacks
As shown in the previous sections, the countermeasure

was capable of detecting both the first-order and second-
order stages of this attack and generating an indication
or interruption that would have completely stopped the
attack.

8.5. Impact on Device Performance
The hardware countermeasure module performs an ac-

tive collection and evaluation of data during its operation.
As such, it requires power to operate.

The manufacturer datasheet of the microcontroller used
for evaluating the countermeasure methods in this paper,
STM32L432 [37], reports a power usage of 1.05mA when
running on 8 MHz 1.8v which translates to 0.0019 Watt.
While inactive and in shut-down state, the microcontroller
consumes 63nA (1.1−7 Watt). Considering a typical smart-
phone battery capacity in the range of 8-13 Watt-hours [48]
and active screen time of 10% on a 48 hour power budget,
the microcontroller will be responsible for less than 0.1
percent of the overall power consumption.

As previously mentioned, the countermeasure may be
placed in-line within the communication bus and belay
messages in a manner that introduces a delay to messages.
We observe that the duration of a single byte transmission
by a full-speed, 400kbit/s I2C device is equivalent to 1600
clock cycles of the 80MHz STM32L432 microcontroller.
Therefore, we conclude that an efficient countermeasure
program executed on a modern microcontroller should be
sufficient for avoiding delays larger then the transmission
duration of a single byte.

8.6. Limitation
While the protection of the proposed countermeasure

against chip-in-the-middle scenarios and chip replacement

14

scenarios is hard to circumvent, the protection against ma-
licious firmware is not as powerful. A malicious firmware
operates on the same microcontroller as a benign one and
may possess any of the properties of the latter. We expect
that in the case of malicious firmware, data-based anomaly
detection can be used to further enhance the countermea-
sure in a way that will improve detection.

9. Conclusions

The threat of a malicious peripheral existing inside
consumer electronics should not be taken lightly. The con-
versation around the alleged hardware implants raises a
serious concern about if and where these have been embed-
ded, and what damage are they doing. As this paper shows,
attacks by malicious implants and peripherals are feasible,
scalable, and invisible to most detection techniques. A
well-motivated adversary may be fully capable of mounting
such attacks on a large-scale or against specific targets.
System designers should consider replacement components
to be outside the phone’s trust boundary, and design their
defenses accordingly.

Conservative estimates assume that there are about two
billion smartphones in circulation today. Assuming that
20% of these smartphones have undergone screen replace-
ment [1], there are on the order of 400 million smartphones
with replacement screens in the world. An attack which
compromises even a small fraction of these smartphones
through malicious components will be comparable to that
of the largest PC-based botnets.

The countermeasure described in our work was shown
to be effective against the proposed attacks. As a low-cost
and minimally disruptive solution, the hardware counter-
measure can be further developed to protect against threats
similar to those presented in this paper, as well as other
threats that may be introduced to the system such as active
fault attacks.

Acknowledgments

This research was supported by Israel Science Founda-
tion grants 702/16 and 703/16.

References

[1] Motorola Mobility. Cracked screens and broken hearts - the 2015
motorola global shattered screen survey. https://community.
motorola.com/blog/cracked-screens-and-broken-hearts.

[2] Defense Information Systems Agency. The Department of
Denfense Approved Products List. https://aplits.disa.mil/
processAPList.

[3] Yajin Zhou and Xuxian Jiang. Dissecting android malware:
Characterization and evolution. In 2012 IEEE Symposium on
Security and Privacy, pages 95–109. IEEE, 2012.

[4] Jeffrey Bickford, Ryan O’Hare, Arati Baliga, Vinod Ganapathy,
and Liviu Iftode. Rootkits on smart phones: attacks, implications
and opportunities. In Proceedings of the eleventh workshop on
mobile computing systems & applications, pages 49–54. ACM,
2010.

[5] Seyyedeh Atefeh Musavi and Mehdi Kharrazi. Back to static
analysis for kernel-level rootkit detection. IEEE Transactions
on Information Forensics and Security, 9(9):1465–1476, 2014.

[6] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
Linux Device Drivers: Where the Kernel Meets the Hardware. "
O’Reilly Media, Inc.", 2005.

[7] Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert.
Dark side of the shader: Mobile gpu-aided malware delivery. In
International Conference on Information Security and Cryptol-
ogy, pages 483–495. Springer, 2013.

[8] Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis,
Michalis Polychronakis, and Sotiris Ioannidis. You can type, but
you can’t hide: A stealthy gpu-based keylogger. In Proceedings
of the 6th European Workshop on System Security (EuroSec),
2013.

[9] Matthew Brocker and Stephen Checkoway. iseeyou: Disabling
the macbook webcam indicator led. In USENIX Security, pages
337–352, 2014.

[10] Zhaohui Wang and Angelos Stavrou. Exploiting smart-phone
usb connectivity for fun and profit. In Proceedings of the 26th
Annual Computer Security Applications Conference, pages 357–
366. ACM, 2010.

[11] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and
Kiran S Balagani. On inferring browsing activity on smartphones
via usb power analysis side-channel. IEEE Transactions on
Information Forensics and Security, 12(5):1056–1066, 2017.

[12] Apple Inc. Error 53 support page. https://support.apple.com/
en-il/HT205628.

[13] National Institute of Standards and Technology. Cyber-
security Framework v1.1 - Draft. https://www.nist.gov/
cyberframework/draft-version-11.

[14] Inez Miyamoto, Thomas H Holzer, and Shahryar Sarkani. Why a
counterfeit risk avoidance strategy fails. Computers & Security,
66:81–96, 2017.

[15] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed,
and XiaoFeng Wang. The peril of fragmentation: Security
hazards in android device driver customizations. In 2014 IEEE
Symposium on Security and Privacy, pages 409–423. IEEE, 2014.

[16] Omer Shwartz, Guy Shitrit, Asaf Shabtai, and Yossi Oren. From
smashed screens to smashed stacks: Attacking mobile phones
using malicious aftermarket parts. In Workshop on Security for
Embedded and Mobile Systems (SEMS 2017), 2017.

[17] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang
Zhang. Privacy risk analysis and mitigation of analytics libraries
in the android ecosystem. IEEE Transactions on Mobile Com-
puting, 2019.

[18] Yongzhong He, Xuejun Yang, Binghui Hu, and Wei Wang. Dy-
namic privacy leakage analysis of android third-party libraries.
Journal of Information Security and Applications, 46:259–270,
2019.

[19] Jacob Leon Kröger and Philip Raschke. Is my phone listening
in? on the feasibility and detectability of mobile eavesdropping.
In IFIP Annual Conference on Data and Applications Security
and Privacy, pages 102–120. Springer, 2019.

[20] Bloomberg Businessweek. The big hack: How china used a tiny
chip to infiltrate u.s. companies. bloomberg.com, 2018.

[21] Eric Wemple. Your move, bloomberg. washingtonpost.com, 2018.
[22] Duncan Riley. Apple, amazon and super micro call on bloomberg

to retract china spy chip story. siliconangle.com, 2018.
[23] Supermicro. Supermicro historic stock price. supermicro.com,

2019.
[24] Theo Markettos. Making sense of the supermicro motherboard

attack. lightbluetouchpaper.org, 2018.
[25] Trammell Hudson. Modchips of the state. 2018.
[26] NCC Group Plc. TPM Genie. https://github.com/nccgroup/

TPMGenie.
[27] Google. Android Security Bulletin.
[28] UL. Counterfeit iphone adapters.
[29] Amit Chowdhry. Apple: Nearly 90% of ’genuine’ iphone chargers

on amazon are counterfeit. Forbes.com, 2016.
[30] Omer Shwartz, Amir Cohen, Asaf Shabtai, and Yossi Oren.

15

https://community.motorola.com/blog/cracked-screens-and-broken-hearts
https://community.motorola.com/blog/cracked-screens-and-broken-hearts
https://aplits.disa.mil/processAPList
https://aplits.disa.mil/processAPList
https://support.apple.com/en-il/HT205628
https://support.apple.com/en-il/HT205628
https://www.nist.gov/cyberframework/draft-version-11
https://www.nist.gov/cyberframework/draft-version-11
https://github.com/nccgroup/TPMGenie
https://github.com/nccgroup/TPMGenie

Shattered trust: when replacement smartphone components
attack. In 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[31] Shakeel Butt, Vinod Ganapathy, Michael M Swift, and Chih-
Cheng Chang. Protecting commodity operating system kernels
from vulnerable device drivers. In Computer Security Appli-
cations Conference, 2009. ACSAC’09. Annual, pages 301–310.
IEEE, 2009.

[32] CC Okolie, FA Oladeji, BC Benjamin, HA Alakiri, and O Olisa.
Penetration testing for android smartphones. 2013.

[33] Mordechai Guri, Yuri Poliak, Bracha Shapira, and Yuval Elovici.
Joker: Trusted detection of kernel rootkits in android devices
via jtag interface. In Trustcom/BigDataSE/ISPA, 2015 IEEE,
volume 1, pages 65–73. IEEE, 2015.

[34] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez,
and Arturo Ribagorda. Evolution, detection and analysis of
malware for smart devices. IEEE Communications Surveys &
Tutorials, 16(2):961–987, 2014.

[35] Nir Nissim, Ran Yahalom, and Yuval Elovici. Usb-based attacks.
Computers & Security, 70:675–688, 2017.

[36] NXP. I2C-bus specification and user manual, April 2014. http:
//www.nxp.com/documents/user_manual/UM10204.pdf.

[37] STMICROELECTRONICS. STM32L432 Datasheet, May 2018.
https://www.st.com/resource/en/datasheet/stm32l432kc.
pdf.

[38] Arduino. Arduino Home Page. https://www.arduino.cc.
[39] Atmel Corporation. ATmega Datasheet, 2018.

https://ww1.microchip.com/downloads/en/DeviceDoc/
ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf.

[40] Cypress. PSoC 4000 Family Datasheet, November 2017. http:
//www.cypress.com/file/138646/download.

[41] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and
Dawn Song. Touchalytics: On the applicability of touchscreen
input as a behavioral biometric for continuous authentication.
IEEE Trans. Information Forensics and Security, 8(1):136–148,
2013.

[42] Julian Fierrez, Ada Pozo, Marcos Martinez-Diaz, Javier Galbally,
and Aythami Morales. Benchmarking touchscreen biometrics
for mobile authentication. IEEE Transactions on Information
Forensics and Security, 13(11):2720–2733, 2018.

[43] Chao Shen, Yong Zhang, Xiaohong Guan, and Roy A Maxion.
Performance analysis of touch-interaction behavior for active
smartphone authentication. IEEE Transactions on Information
Forensics and Security, 11(3):498–513, 2016.

[44] Moran Azran, Niv Ben Shabat, Tal Shkolnik, and Yossi Oren.
Brief announcement: Deriving context for touch events. In
International Symposium on Cyber Security Cryptography and
Machine Learning, pages 283–286. Springer, 2018.

[45] Ralf Hund, Thorsten Holz, and Felix C Freiling. Return-oriented
rootkits: Bypassing kernel code integrity protection mechanisms.
In USENIX Security Symposium, pages 383–398, 2009.

[46] Stephen Smalley, Chris Vance, and Wayne Salamon. Imple-
menting selinux as a linux security module. NAI Labs Report,
1(43):139, 2001.

[47] Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic
control units for vehicle intrusion detection. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 911–927,
2016.

[48] Kyung Mo Kim, Yeong Shin Jeong, and In Cheol Bang. Thermal
analysis of lithium ion battery-equipped smartphone explosions.
Engineering Science and Technology, an International Journal,
22(2):610–617, 2019.

16

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.st.com/resource/en/datasheet/stm32l432kc.pdf
https://www.arduino.cc
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://www.cypress.com/file/138646/download
http://www.cypress.com/file/138646/download

	Introduction
	Related Work
	Alleged Hardware Implants Reported
	Responses
	Properties of the Implant
	Feasibility of an Implant
	Review and Limitations

	Our Attack Model
	Malicious Peripherals
	Case Study - Touch Controller Communications
	Boot up process
	Touch reporting

	Attack Setup
	Applicability to Other Phone Models and Operating Systems

	First-Order Attacks
	Touch Logging and Injection Attacks
	User Impersonation and User Compromise

	Second-Order Attacks
	Arbitrary Code Execution Attacks
	Design
	Implementation
	Evaluation
	Attacks on additional devices

	End-to-End Attacks
	Phone Compromise
	Attack Implementation

	Countermeasure
	Motivation
	Analysis
	Design
	Evaluation
	Implementation
	Selection of detection parameters
	Detection of first-order attacks
	Detection of second-order attacks
	Detection of the complete end-to-end attacks

	Impact on Device Performance
	Limitation

	Conclusions

