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Abstract—The cloud-based Internet of Things (IoT) enables the
creation of innovative computer applications based on sensing,
analyzing, and controlling the physical world. IoT deployments,
however, are at a particular risk of counterfeiting, through which
an adversary can corrupt the entire ecosystem. Therefore, entity
authentication of edge devices is considered an essential part
of the security of IoT systems. This research addresses the
challenge of generating a unique ID in IoT devices. Unique IDs
allow the IoT system maker to identify each edge device, and to
ensure that only genuine devices can upload data to the cloud.
Traditional ID mechanisms are not feasible in IoT, due to the
edge device’s constrained runtime environment, or the additional
costs and the deployment difficulties that they introduce. In this
work, we present JULIET-PUF, a novel PUF-based method for
IoT identification, which relies on SRAM content retrieval after
power glitches with time differences. Our scheme comes with no
added hardware cost on the edge device. We evaluate JULIET-
PUF using a dataset of 24 units of a popular commercial IoT
device, and show that it is on average 95.58 times more secure
than the common use of SRAM-PUF.

Index Terms—Physical security, Entity authentication, Physi-
cally Unclonable Functions, SRAM-PUF.

I. INTRODUCTION

INTERNET of Things systems are typically made up of
a large set of low-cost devices, which are connected to a

powerful cloud server. The added value of the system derives
from a combination of the two elements: the edge devices
provide sensing and actuation capabilities, and the cloud server
makes intelligent decisions based on the aggregated data, and
provides convenient access to the edge devices through a
centralized platform. For example, a distributed network of
security cameras can each monitor an individual resident’s
doorway, and the centralized cloud server can aggregate this
data to derive higher-level insights about the conditions in the
entire neighborhood.

When a consumer purchases an IoT edge device, the amount
paid for the device covers not only the relatively low cost
of manufacturing the edge device itself, but also the cost of
developing and maintaining the expensive cloud server. This
cost structure makes the IoT ecosystem particularly vulnerable
to counterfeiting. For example, an unscrupulous vendor can
reverse-engineer a competitor’s edge device and create a low-
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Fig. 1. The SRAM content of a device gradually changes over the various
glitch durations, allowing multiple challenge-response pairs (CRPs) to be
generated per device.

cost clone which takes advantage of the competitor’s cloud
service; since this unscrupulous vendor spends nothing on
the cloud service, he/she can offer a counterfeit device at a
much lower cost than the original, while offering the same
functionality. This risk is exacerbated by the reliance of
many IoT manufacturers on original equipment manufacturers
(OEMs), who create the edge devices as subcontractors. Since
these OEMs already possess the hardware and software spec-
ifications of the edge device, they can simply produce more
edge devices than that requested by the IoT manufacturers and
sell the extra units at a discount on the counterfeit market. The
relative low cost and simplicity of common edge devices also
raises another risk. A vendor interested in causing harm to a
competitor can create malicious edge devices that connect to
the competitor’s cloud server and feed it false data. This will
cause the cloud server’s algorithm to make incorrect decisions
based on the corrupted data, and ultimately, it can also reduce
consumer trust in the vendor’s platform.

Because of these risks, it is important to properly authen-
ticate edge devices before they are allowed to connect to the
server. Essentially, the IoT system designer should maintain
a list of edge devices authorized to interact with the server
so that connection attempts of other devices will be rejected.
This enables the vendor to ensure that only authorized devices
benefit from the value provided by the powerful cloud server,
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and allows the vendor to defend the cloud service from attacks
such as the injection of malicious data.

A crucial requirement of any such authentication scheme
is the ability to provide each device with a unique identifier.
To prevent counterfeiting, this identifier should be difficult for
counterfeiters to copy. Motivated by the cost sensitivity IoT
edge devices, many studies have examined ways of providing
this authentication ability without increasing the cost of the
device. One promising method of assigning a unique identifier
is to use intrinsic physically unclonable functions (PUFs). A
PUF was defined by Barbareschi et al. in [1] as a function
realized by means of a physical object, which relies on random
variations introduced during manufacturing processes in order
to be difficult to predict, yet easy to evaluate.

In general, to interact with a PUF, the authenticator typically
issues the PUF with a challenge, by controlling some input of
the PUF, such as the angle of illumination or the value of an
input register. Then, the authenticator collects the response to
this challenge, by measuring the effect of this challenge on the
PUF’s value. To use PUFs as part of an authentication scheme,
the authenticator operates in two phases – an enrollment phase,
and an authentication phase. In the enrollment phase, the
authenticator issues a series of challenges to the PUF, and then
records the responses of the PUF to each challenge and stores
these challenge-response pairs (CRPs) in a central database.
In the authentication phase, the authenticator issues a single
challenge (from the set of stored CRPs) to the PUF, and the
edge device extracts the PUF response itself and proves to
the server that it knows the PUF response, potentially using a
secure protocol. An example of such an authentication scheme
can be seen in [2].

Since PUF responses are typically measurements of physical
phenomena, they are affected by measurement artifacts, or
noise. This makes them slightly different each time they are
read out. To compensate for this, PUF response extraction
usually involves an error correction step in which the raw
response is processed using an algorithm such as Reed-
Solomon [3] or LDPC [4], [5]. As discussed by Xiong et
al. in [6], PUF responses should be as stable as possible
when the same challenge is repeated (low intra-challenge
distance), but they should also be significantly different than
the responses provided for a different challenge (high inter-
challenge distance).

One of the most commonly-used types of intrinsic PUFs
is the SRAM-PUF. As defined by Cortez et al., SRAM-PUFs
take advantage of the way SRAM acts on startup. As each
SRAM cell has its own bias toward a preferred startup value
(one, zero, or random), a unique fingerprint can be created
using multiple SRAM cells’ startup values [7]. As noted by
Mispan et al. [8], SRAM-PUFs are a natural match for IoT
authentication. There are two main reasons for this good fit:
virtually all microcontrollers make use of SRAM memory, and
reading the response from the SRAM requires nothing more
than reading from a large block of uninitialized memory. The
main limitation of SRAM-PUFs is that they do not have an
explicit challenge step. As a result, each device only has a
single possible response – the content of the SRAM memory
when the device is turned on. While over-the-air adversaries

who monitor the communication between the device and
the authenticator can be prevented from learning this secret
response using methods such as zero-knowledge proofs [9],
[10], IoT edge devices must be analyzed while taking into
account their very low cost and high availability. It is relatively
straightforward for an adversary to purchase an IoT device
and read out the SRAM startup values, either by using a
malicious software update or by directly interfacing with the
SRAM in hardware. Once the adversary knows the startup
value, it is trivial for him/her to create a cloned device that
impersonates the IoT device by repeating the extracted SRAM-
PUF response. Since there is no challenge, all the attacker
needs to do to create such a counterfeit device is to store the
cloned PUF response in a non-volatile memory. Thus, the cost
of creating such a clone is minimal.

The objective of our work is to enhance the security of
SRAM-PUFs in IoT deployments by introducing a challenge
component, without adding any additional hardware to the
authenticating circuit. The key point enabling this is the fact
that different bits in SRAM have different remanence times,
as originally observed by Holcomb [11]. An outcome of this
observation, originally noted by Oren [12], is that if an SRAM
device is powered off for a specified fixed brief amount
of time (an act commonly referred to as power glitching),
some of the bits in the SRAM will revert to their default, or
PUF, states, while the rest will retain their original value, as
illustrated in Figure 1. This observation serves as the basis of
a challenge response scheme we call JULIET-PUF1, a novel
PUF-based unique ID generation method, where in a nutshell,
the authenticator sets the bits of the SRAM to a fixed value,
then powers off the device for a specified brief duration,
and finally turns on the device and reads out the value of
the SRAM, as illustrated in Figure 2. The glitch time is the
implicit challenge: for each selected time, a different subset
of the SRAM bits will revert to its PUF state, resulting in
a different PUF response. To counterfeit such a device, an
adversary would need to both record all possible responses
of the device to different power glitch durations, and use a
timekeeping mechanism that can measure the duration of the
power glitch and map it to the correct stored response. These
two additional requirements would significantly increase the
cost of producing such a counterfeit, making it less cost-
effective than purchasing the original device, as we show in
Section IV-B. The JULIET-PUF scheme consists of two phases
– the enrollment phase, which is the process of assembling
various CRPs, and the authentication phase (also referred
to as the authentication process) which works as follows.
When entity authentication is required, the cloud server, as
the authenticator, challenges the edge device and measures its
response. As shown in Figure 2, the authentication process
involves the following steps:

1) At the beginning of the authentication process, the edge
device sends an authentication request to the cloud server,
which includes its ID. The cloud server then randomly

1In Shakespeare’s play Romeo and Juliet, the heroine Juliet drinks a
sleeping potion in order to present a “borrow’d likeness of shrunk death”
for a limited period of time.
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chooses a challenge from the CRP list of that particular
device.

2) The values of the SRAM cells of the edge device are set
to one, and the device then shuts down for the duration of
the power glitch. After being turned back on, the device
sends its SRAM content as the response.

3) The cloud server receives the response and calculates the
distance between the response and the response corre-
sponding to the challenge, as specified in the CRP list. If
the calculated distance does not exceed a certain thresh-
old, the device is approved. Otherwise, it is rejected.

Identification

Set Initial Value

Read Response

1

2

3

Power Glitch

Fig. 2. JULIET-PUF authentication process.

As our results show, JULIET-PUF increases the challenge
space of SRAM-PUFs by a factor of almost 100, without
adding any extra hardware to the authenticating IoT device.

To summarize, the contributions of our paper are as follows:
• We introduce the JULIET-PUF scheme and its associated

challenge-response protocol.
• We investigate the factors that affect the scheme’s security

and robustness, and show how it is influenced by the
temperature, the accuracy of the timing source, and the
amount of bits in the PUF response.

• We present a proof-of-concept demonstration of JULIET-
PUF and report on its performance.

• We perform a security analysis and show that the pro-
posed method improves the security level of SRAM-PUF
schemes, especially in the attack model appropriate for
IoT devices.

We believe that our proposed method can be used whenever
SRAM-PUF schemes are used today, significantly increasing
the security of SRAM-PUF IoT deployments without increas-
ing their cost.

II. METHODS

The consistency of SRAM cell values after a power glitch
is affected by three factors: the environmental temperature, the
accuracy of the glitch period, and the intrinsic instability of
the SRAM itself. We aim to develop a fingerprinting method
with a reasonable authentication time and increased security,
that takes these factors into account while meeting the cost
constraints of the IoT environment.

We define inter-distance as the Hamming distance between
multiple samples (PUF responses) of the same device, which

are produced by power glitches with different durations, and
intra-distance as the distance between samples of the same
device, which are produced by power glitches with similar
durations. To increase the security of our proposed method,
we aim to significantly increase the number of SRAM-PUF
CRPs. To do so, we want to make the intra-distance as low as
possible, relative to the inter-distance.

In this section, we introduce the proposed methodology. A
detailed explanation of the highly parallelized data collection
facility we developed, which consists of 24 units of a popular
commercial IoT device, is provided, as well as an explana-
tion of the enrollment phase – the process of assembling
CRPs, from trace collection through distance calculation, bit
selection, challenge selection, and the final calculation of the
representative PUF for each challenge. We then describe the
authentication phase.

A. Development of an Innovative Data Collection Facility

In order to generate a large amount of CRPs and ensure that
JULIET-PUF fulfills its objectives, a large quantity of high-
quality data needs to be collected. To do so, we developed a
highly parallelized data collection facility capable of profiling
a large number of IoT devices simultaneously. The facility
includes remote interfaces, such as power supply management,
programming, and communication.

We chose to implement our proposed method on the
nRF52832 SoC [13], a general-purpose multiprotocol SoC
capable of handling demanding application and communica-
tion tasks quickly, which can be found in many IoT devices,
including Apple AirTags, P8 smartphones and Casper glow
lights. Our experimental environment consists of 24 units of an
IoT device equipped with this SoC, specifically the NORDIC
nRF52 development kit.

To ensure that the facility is suitable for implementing
JULIET-PUF, we modified each of the 24 devices in such
a way that allows us to perform power glitching on them,
efficiently and inexpensively. We note that these adjustments
do not affect the component cost of the devices.

We initially modified two potential types of devices, the
NORDIC nRF52 DK and the Adafruit Bluefruit nRF52
Feather, in order to determine which type is more suitable
for our experimental setup.

After examining the NORDIC device’s power plan and
filtering, we decided to cut the PCB track shorting a solder
bridge to connect a transistor to the device’s current measure-
ment legs. By doing so, we were able to control the incoming
voltage. We also removed some stabilizers, so they would not
interfere with our measurement setup. The modified NORDIC
nRF52 DK can be seen in Figure 3.

After examining the Adafruit Bluefruit nRF52 Feather
device’s power plan and filtering, which also contains the
nRF52832 SoC, we concluded that the component that needs
a modification is the linear voltage regulator, whose fifth leg
is connected to a stabilizer, and through which the voltage
continues to the chip. To control the power glitches, we lifted
the regulator’s fifth leg and connected a 2-pin header – one
pin to the fifth leg and the other pin to the original connection
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Fig. 3. Modified NORDIC nRF52 DK.

of the fifth leg to the track. By doing so, we were able to
put a transistor on top of the header. We then removed some
stabilizers, so they would not interfere. The modified Adafruit
Bluefruit nRF52 Feather is presented in Figure 4.

Fig. 4. Modified Adafruit Bluefruit nRF52 Feather.

After examining the modifications required for each of the
devices, we decided to use the NORDIC nRF52 DK in our
data collection facility, given the ease with which it can be
modified. Although the modifications of the Feather have no
effect on the cost of the device, adjusting the Feather requires
more engineering work.

After selecting the device, our next step was to choose a
suitable timing source for the power glitches. We examined
two cases – the use of a cheap, readily-available and easy-
to-develop product, and the use of the best available sys-
tem. The Raspberry Pi 4 serves as the cheap and readily-
available product, and the Active Technologies Pulse Rider
PG-1072 serves as the best available system, because of
its high resolution, low jitter pulse generation capabilities.
Using both systems (separately), we were able to collect data
traces that include the initial startup values of the devices’
SRAM immediately after initializing the SRAM cells to one
and performing power glitches of different durations. We
then compared the quality of JULIET-PUF traces generated
when using these two different setups. To perform the power
glitches remotely, we connected each edge device to an S8550
transistor, with which we controlled the incoming voltage. In
the Raspberry Pi’s implementation, we used the Raspberry
Pi’s GPIO (General-Purpose Input/Output). As can be seen
in Figure 5, we attached the Raspberry Pi’s ground pin to
the devices’ ground pins, and two different outputs of the
Raspberry Pi’s GPIO to the transistors and to the reset pins
of the devices. This allowed us to perform power glitches

remotely by sending a signal to the transistors and a signal to
the reset pins. To control the durations of the power glitches,
we used the ’sleep’ command between setting and resetting
the outputs (this way we could interrupt the transistor during
execution of the sleep command). Note that the signal sent to
the reset pin was required when performing power glitches of
short durations, since beyond some point the devices do not
reboot, and thus do not send their SRAM content as required.

Fig. 5. Performing power glitches using the Raspberry Pi [14] [15].

Similarly, in the Pulse Rider’s implementation we attached
the Pulse Rider’s ground pin to the devices’ ground pins, and
we also attached two different outputs from the Pulse Rider
to the transistors and to the reset pins of the devices.

In [16], Xiao et al. showed that SRAM-PUFs are strongly
affected by temperature variations. Therefore, for each power
glitch performed, we measured the instant temperature around
the devices using a Raspberry Pi Sense Hat. Figure 6 shows
the data collection facility, which includes 24 devices, which
in turn are connected to the power glitch source, the Raspberry
Pi Sense Hat, and a management server.

Fig. 6. JULIET-PUF’s Data Collection Facility.
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Fig. 7. The process of assembling challenge-response pairs.

B. Assembling Challenge-Response Pairs

What distinguishes JULIET-PUF from other SRAM-PUF
schemes is that it has multiple CRPs. This contributes to its
security: in fact, the more pairs it has, the safer it is. To this
end, we collected a large amount of data and attempted to
use it to extract high-quality CRPs, where the intra-distance
is measurably smaller than the inter-distance. As can be seen
in Figure 7, the process of assembling CRPs consists of five
steps:

1) Data Collection – collecting SRAM startup values after
initializing the SRAMs’ cells to one and performing
power glitches of varying durations.

2) Bit Selection – using bit selection approaches to identify
the most appropriate bit subset for removal (meaning that
without a given subset, the rest of the CRP assembly
process will result in the greatest number of CRPs).

3) Distances Calculation – producing a matrix of the average
distances between any two potential challenges for each
device.

4) Challenges Selection – selecting the challenges that will
be part of the CRPs.

5) Representative PUF Calculation – assigning the most
suitable response to each challenge, by selecting each bit
individually, with the value that appears most frequently
in the samples.

Each step is described in more detail below.
1) Data Collection: We collected SRAM startup values

from 24 IoT identical devices, after initializing the SRAMs’
cells to one; them we performed power glitches of various
durations, from zero to seven milliseconds, at 10 microsecond
intervals (enabling the collection of 700 traces for each de-
vice). We repeated this experiment 100 times; thus, for each
device we collected 100 traces for each power glitch duration,
in total collecting 70,000 traces per device. Each trace con-
sists of a timestamp, device ID, serial port, glitch duration,
memory array address, device’s code version, experiment tag,
temperature, trigger (to indicate whether the experiment was
conducted using a Raspberry Pi or Pulse Rider), and a 26KB
PUF value. We first performed the process without considering

the temperature around the devices during data collection. The
results obtained were satisfactory, but the instability of the
PUF values could be seen to reflect a cyclical behavior which
was originated in the changing temperature (for example,
different values were obtained at different times of the day, and
a difference was seen between samples obtained on weekdays
and weekends when there were fewer people in the laboratory).

2) Bit Selection: In order to obtain more accurate results,
for each individual device examined, we aimed to remove
the bits that were the least stable across the various glitch
durations. This was accomplished by checking (for each
device) each bit’s stability for all samples originating from
power glitches with the same duration. Then, by examining the
average bit stability across all glitch durations, we were able to
obtain a list of bits sorted according to their stability. We then
aimed to identify the most appropriate bit subset to remove
(meaning that without including a given subset, the process
will result in the greatest number of CRPs). We accomplished
this by repeating the entire process several times with different
subsets of bits.

3) Distances Calculation: After data collection, we pro-
duced a matrix of at most 700 by 700 records for each of
the 24 devices; these matrices represent the average distances
between any two potential challenges (power glitch durations)
for each device. The Hamming distance was calculated for
each pair of samples for each of the two challenges. The
average of these distances represents the average distance
between each two challenges. At the end of this step, for
each device we obtain a matrix whose diagonal consists of
the average distances between each challenge and itself (the
intra-distance), and the cells outside the diagonal consist of
the average distances between each challenge and the rest of
the challenges (the inter-distance). Note that the size of the
matrix differs from device to device: As we exploit the SRAM
remanence decay, we can exclude irrelevant regions from the
matrix, ones that contain either samples identical to the initial
value before the SRAM starts to decay, or a set of identical
samples, having stopped changing from one to another after a
certain period of time has elapsed since the device was turned
off (which behave like the common use of SRAM-PUF). Those
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regions can be seen as sections without a slope in Figure 10.
4) Challenges Selection: We then selected the challenges

that will be part of the CRPs, using an iterative algorithm that
excludes the worst challenge in each iteration, i.e., the chal-
lenge for which there is the smallest difference between the
intra-distance and the smallest inter-distance. The algorithm
stops when all of the remaining challenges are far from one
another in a way that allows each challenge to be linked to
a different response, in a one-to-one manner; therefore the
remaining challenges can all be used to create the CRPs. As
previously mentioned, the larger the number of CRPs, the more
secure the PUF.

5) Representative PUF Calculation: To complete the CRP
list assembly process, after selecting the challenges to use for
each device, we assigned the most suitable response to each
challenge. Since we collected 100 responses for each chal-
lenge, we assembled the representative PUF by selecting each
bit individually, with the value that appears most frequently in
the samples for each glitch duration.

III. RESULTS

In this section, we describe the experiments performed
and present our results. A detailed explanation of the various
approaches we used to improve the results is provided, along
with their impact on the security of our proposed method,
which is measured by the number of the CRPs obtained. The
results derived from the use of each of the two devices as a
power glitch source, given all the approaches we have used
are summarized in the table below (in which we use PR and
Pi as abbreviations for Pulse Rider and Raspberry Pi).

SRAM-PUF JULIET-PUF
Temp control Baseline
PR Pi PR Pi

CRPs 1 95.58 55.91 16.54 13.54

As the table shows, introducing JULIET-PUF to an existing
SRAM-PUF authentication system can enhance the system’s
security by a factor of between 13 and 100, depending on
the temperature control and the accuracy of the power glitch
source. We explain each factor in detail below.

A. Impact of the Power Glitch Source

In order to examine the accuracy of the power glitch
durations that each system provides, we measured the glitch
durations in practice using a Keysight MSOS604A mixed
signal oscilloscope, and compared them with the intended
ones. Since the data collection consists of traces obtained
while performing power glitches of various durations, from
zero to seven milliseconds at 10 microsecond intervals, to
estimate the accuracy of each device, we measured the glitch
duration we obtained in practice for various durations from
10 microseconds and up to seven milliseconds with 100
microsecond intervals.

As can be seen in Figures 8 and 9, the Pulse Rider provides
much more accurate power glitches, with a significantly lower
absolute error rate and standard deviation than those of the

Raspberry Pi. Note that regardless of the power glitch source
used, the higher the sampling rate (i.e., the smaller the
interval between every two samples), the greater the number of
potential CRPs, and thus the number of CRPs obtained. Also
note that each device has a different number of potential CRPs
and thus there is a corresponding difference in the results.
This stems from the fact that the memory decay time of each
device is different, as can be seen in Figure 10. We observe
that if we increase the number of potential CRPs, the number
of CRPs assembled at the end of the process will also increase.
However, there will be a cost in doing so, as the enrollment
phase will become more expensive.
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Fig. 8. Power glitch duration obtained in practice compared to the intended
duration using the Pulse Rider and Raspberry Pi.
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Fig. 9. The standard deviation of the power glitch duration obtained in practice
using the Pulse Rider and Raspberry Pi.

The practical impact of the accuracy of the power glitch
source, as observed by the number of CRPs obtained by using
each source, can be seen in Table I. As shown in the Table,
while both sources provided a much larger number of CRPs
than the common use of SRAM-PUF, the results based on
data derived from the Pulse Rider were measurably better –
16.54 times more secure (on average) than with it is with the
common use of SRAM-PUF, and at least 9 times more secure
in the worst case.
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TABLE I
THE EFFECT OF TEMPERATURE ON THE NUMBER OF CRPS.

Device Potential Number of Pulse Rider CRPs Number of Raspberry Pi CRPs
High Temp Cluster Low Temp Cluster Baseline High Temp Cluster Low Temp Cluster Baseline

1 225 103 60 11 54 42 12

2 263 134 75 18 68 53 14

3 158 119 112 17 56 59 15

4 165 88 48 16 53 57 17

5 191 110 64 16 58 35 11

6 266 91 43 17 54 31 9

7 193 64 26 9 43 37 9

8 193 86 53 14 54 37 9

9 205 80 84 15 55 64 15

10 270 61 26 9 53 39 9

11 320 73 12 12 52 38 9

12 201 65 78 12 42 57 10

13 157 83 59 16 52 61 15

14 228 65 67 12 42 54 12

15 216 130 99 43 78 59 26

16 209 110 47 28 70 57 22

17 178 128 111 16 59 50 17

18 297 48 29 9 36 44 10

19 157 97 56 10 46 31 8

20 206 115 76 16 60 47 14

21 249 100 50 10 59 43 10

22 175 105 40 17 58 51 14

23 204 98 65 13 56 35 10

24 412 141 66 41 84 75 28

Average 222.41 95.58 60.25 16.54 55.91 48.16 13.54
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Fig. 10. Hamming weight of PUFs collected from three different units of the
same IoT device, indicates that different units have different CRPs potential,
influenced by their decay characteristics.

B. Impact of Temperature Change

The SRAM content of a particular device which gradually
changes over the various glitch durations, is also influenced
by the temperature, as can be seen in Figure 11. To examine
the effect of temperature on our ability to produce CRPs,

for each device we performed the process of assembling the
CRPs twice more, while taking the effect of the temperature
on the SRAM values into account. First, we divided the
samples collected from the experiment using the Pulse Rider
as the power glitch source into two groups (also referred as
high temp cluster and low temp cluster): samples collected
at a temperature equal to or higher than 31◦C (as measured
by the Raspberry Pi Sense Hat) and samples collected at
a temperature equal to or less than 29.5◦C. Second, we
divided the samples collected from the experiment using the
Raspberry Pi as the glitch source into two groups: samples
collected at a temperature equal to or higher than 17.75◦C
and samples collected at a temperature equal to or less than
17.25◦C. The reason for the temperature differences between
the experiments is that the physical characteristics of the
second experiment forced us to use a ribbon cable, to separate
the Sense Hat from the heat emanating from the Raspberry
Pi’s CPU. In both cases, we disregarded approximately 6%
of the measurements, which were obtained as the temperature
was moving between the two clusters. As can also be seen
in Figure 11, if we divide the samples into two clusters, the
Hamming weight range of each power glitch duration can
be reduced, making it possible to obtain much lower intra-
distances than inter-distances. Based on this observation, for
each device, we performed the process of assembling CRPs
twice again (starting from step II-B3), using the data of each
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cluster individually.

High Temp Cluster

Low Temp Cluster

Fig. 11. The effect of temperature on the Hamming weight of samples from
a particular device, with varying power glitch durations. As can be seen, if
we did not control the temperature, samples with a wide range of Hamming
weights would be suitable for each glitch duration. This can therefore be
limited by controlling the temperature.

Table I shows that the use of the above mentioned approach
improves the security of JULIET-PUF, making it 95.58 times
more secure (on average) and at least 48 times more secure
than the common use of SRAM-PUF, which consists of only
one CRP.

C. Bit Selection

Recent studies on PUFs have demonstrated the use of
helper data to avoid transmitting all of the SRAM memory
as a PUF in the authentication process [17]. We examined
whether the number of CRPs could be increased, by selecting
a smaller subset of bits for the construction of our scheme’s
responses, and performing the process of assembling the CRPs
accordingly. The following process applies to each device
individually, as the helper data is capable of handling each
device differently. First, we removed the least stable bits of
the device, i.e., those with the highest standard deviation. After
removing different percentages of these bits, we performed the
process of assembling the CRPs for the device again. We found
that the higher the percentage of unstable bits we removed, the
fewer CRPs we obtained. Bearing in mind that the least stable
bits contribute to the uniqueness of each PUF, we next tried
to remove removed the most stable bits, i.e., those with the
lowest standard deviation. Here, too, we found that bit removal
reduced the number of CRPs assembled. However, when the
completely stable bits were removed, i.e., those with a standard
deviation equal to zero, there was no change in the number of
CRPs that were assembled. As our results indicate, except for
removing the completely stable bits (which do not affect the
number of CRPs), the larger the broadcast budget, the more
CRPs we will obtain.

D. Demo

After evaluating the CRP capacity of our system, our next
step was to demonstrate that our proposed method is practical
and feasible, in terms of enrollment and authentication time,
for an industrial environment. The enrollment phase consists
of performing the CRP assembly process described in Section
II-B. In this phase, most of the time is spent on the data
collection and distances calculation steps. The data collection
takes about 4-5 days (based on the number of samples we
collected from each power glitch). The distance calculation
is a computationally intensive step which also takes several
days, with the calculation of the distance matrix of each
device taking between half an hour and five hours to perform,
depending on the number of samples it consists of (the
baseline takes all samples into account, i.e., the potential
number of challenges; the clusters that are divided by
temperatures, takes only samples at the desired temperatures
into account). The time required to perform the other steps
(i.e., bit selection, challenges selection, and representative
PUF calculation) is negligible. In the demo, we used the
CRPs of several devices to demonstrate the authentication
phase in the following scenarios. In the first scenario, the
device is a genuine device that tries to authenticate in front
of the cloud server. The server chooses a challenge, and the
device sends the SRAM content when it is turned back on.
In this case, the authentication attempt should be successful.
In the second scenario, another device tries to authenticate
in front of the server, as if it were the device used in the
first scenario. Because its response to the challenge is not
the same as that of the first device, the authentication fails.
In the third, adversarial scenario, we show that JULIET-PUF
is more resistant to eavesdropping attacks than a standard
SRAM-PUF. In this scenario, another device, which represents
a counterfeiting adversary, eavesdrops on the authentication
attempt of the first device, stores the response in its own
memory and finally sends the response when it is required
to authenticate itself. Because the server chooses a different
challenge, the authentication fails. In all three scenarios, the
devices were approved or rejected within seven seconds. Note
that in the authentication phase, most of the time is spent on
broadcasting the SRAM content, which means that using a
faster interface or transmitting less data will reduce the time. A
brief demo video is provided in the link: https://drive.google.
com/file/d/1LFYXt40qkg1dw4kSv7EKkg1dJmy7K-2O/view?
usp=sharing.

IV. DISCUSSION

The results of our evaluation demonstrate that we were able
to provide a sustainable system that significantly improves
the security of SRAM-PUF, without any additional hardware
costs. We also conclude that there are a number of factors with
which the results can be further improved:

1) Power glitch duration accuracy – We aimed to create an
affordable solution that would improve SRAM-PUF secu-
rity without the need for additional hardware. Therefore,
we used a Raspberry Pi to generate the power glitches. To

https://drive.google.com/file/d/1LFYXt40qkg1dw4kSv7EKkg1dJmy7K-2O/view?usp=sharing
https://drive.google.com/file/d/1LFYXt40qkg1dw4kSv7EKkg1dJmy7K-2O/view?usp=sharing
https://drive.google.com/file/d/1LFYXt40qkg1dw4kSv7EKkg1dJmy7K-2O/view?usp=sharing
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better understand the limitations of this solution, we also
used a Pulse Rider. As can be seen from the results, with
a higher ability to produce accurate power glitches, it is
possible to produce more CRPs. It would be interesting to
consider a solution that involves producing more accurate
power glitches while maintaining a low overall system
cost.

2) Temperature accuracy – Our experiments demonstrated
the impact of temperature on the number of CRPs.
While we examined dividing the samples into two groups,
dividing the samples into more than two groups would
improve the accuracy of the results and thus lead to more
CRPs.

3) Hardening the challenge – It is possible to significantly
increase the number of CRPs by creating a more complex
challenge, e.g., by querying the end device more than
once or initializing the SRAM values to values other than
one before the power glitch is performed.

In the subsections that follow, we discuss the cost and
reliability impact of our proposed method, provide a brief
security analysis of it, introduce prior work on SRAM-PUF
design and evaluation, and conclude the paper.

A. Impact on Cost and Reliability

Although JULIET-PUFdoes not require any additional hard-
ware costs on the edge device, this challenge-response scheme
has additional steps, compared to traditional SRAM-based
challenge-response schemes. This is reflected in the impact on
the cost, and possibly also on the lifetime of the devices. For
example, the common use of SRAM-PUF does not require a
timekeeping mechanism, and does not involve power glitches
on the edge devices. Hence, the enrollment process is shorter
and simpler, and there is no concern about the impact of the
scheme on the lifetime of the devices. Below we outline the
extra cost involved in using the scheme, and our assessment
of its impact on the devices.

Impact on Cost:
1) Hardware cost and engineering time: As mentioned in

the methods section, turning the devices off and on for
varying periods of time requires the use of transistors
(one for each device) and connecting wires. In addition
to the per-device change, the manufacturing facility must
also install a device that will serve as the power glitch
source. We proposed the Raspberry Pi 4 as the cheap and
readily-available product, and the Active Technologies
Pulse Rider PG-1072 as the best available system. Modi-
fying the device hardware will probably incur additional
engineering time to design the change and test it, costing
an extra several days of engineering work.

2) Enrollment time: in addition to the small change to the
device’s bill of materials, the devices also take longer
to leave the factory after they produced. As explained
in more detail in III-D, most of the time of the enroll-
ment phase is spent on the data collection and distances
calculation steps. The data collection can take several
days, based on the number of samples collected from

each power glitch. The distance calculation is a compu-
tationally intensive step which also takes several days,
with the calculation of the distance matrix of each device
taking between half an hour and five hours to perform,
depending on the number of samples. In this work we did
not take into account the efficiency of the implementation,
and we estimate that the enrollment time can be shortened
significantly. In addition, the time that this phase requires
is not influenced by the number of the devices. Hence,
it can be done on a large batch of devices in parallel,
resulting in a very low amortized time per device.

Impact on Lifetime: During the enrollment phase, the
device is turned on and off approximately 1,000 times. After
concluding this step, however, the device is only powered
down a single time for the purpose of authentication. Due
to the nature of the IoT-based deployment, we assume au-
thentication will only be performed a few times a month
or a year, depending on its implementation. Note that we
do not provide an invalid input voltage at any point, but
only turn off the device. This should have no noteworthy
effect on the devices’ lifetime or the number of cycles before
failure, according to an official response from the manufacturer
of the development kit [18]. The factors that do affect the
device lifetime are mainly the supplied voltage, the storage
and operating temperature, and the amount of flash write/erase
cycles [19]. In general, the number of power cycles performed
during the JULIET-PUF enrollment phase is much lower than
the number of power cycles considered in modern works
discussing power cycle reliability. [20] [21] [19].

To conclude, while the JULIET-PUF challenge-response
scheme does have slightly higher costs than the direct SRAM-
PUF challenge-response scheme, we consider this cost is more
than offset by the increased security level that it provides.

B. Security Analysis

JULIET-PUF’s security should be considered in the context
of the IoT counterfeiting threat model. Under this threat
model, the adversary can purchase an arbitrary number of edge
devices and reverse-engineer them in the lab to discover their
secrets. Then, the adversary can try to use the extracted secrets
to create a counterfeit device that behaves the same way as the
original device. A unique aspect of the counterfeiting setting is
the matter of cost – if the cost of manufacturing a counterfeit
device exceeds the cost of purchasing a non-counterfeit device
(the original device), then the attack is considered ineffective.

The analysis of JULIET-PUF’s security under various at-
tacks presented below, shows that it is equal or superior to
that of standard SRAM-PUF-based authentication. Table II
summarizes the findings of our security analysis.

Man-in-the Middle and Replay Attacks: In this attack
setting, the adversary monitors the communication between
the authenticator and a legitimate edge device, and records
the responses sent by the device. Next, the adversary creates a
counterfeit device which is identical to the legitimate device,
but has malicious firmware which always replays the recorded
response whenever it is queried. This attack vector is already
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made impossible in the SRAM-PUF setting, as long as indus-
try standard transport layer encryption and cryptographic key
exchange protocols are followed.

Malicious Firmware: In this attack setting, the adversary
loads malicious firmware to a legitimate edge device. The
malicious firmware causes the device to output its PUF re-
sponse without any encryption. Next, the adversary creates a
counterfeit edge device which is identical to the legitimate de-
vice, but has malicious firmware which contains an embedded
copy of the extracted PUF response. A local attacker with a
flash firmware programmer could understand the SRAM-PUF
implementation. While the firmware can be copy-protected
using traditional methods such as setting read lock fuse bits,
invasive and non-invasive attacks have been shown to bypass
such protection [22]. When the counterfeit edge device powers
up, it overwrites its own PUF response with the extracted
PUF response, and then follows any required cryptographic
protocol as if the legitimate device’s extracted PUF response
was its own. Standard SRAM-PUF protection is completely
defeated by this attack, since there is only a single possible
PUF response, and the malicious firmware puts it in the hands
of the adversary. JULIET-PUF, on the other hand, remains
safe, since the counterfeit device has no way of measuring the
power glitch duration. As a result, the counterfeit device does
not know which possible response to send to the authenticator,
resulting in a very low authentication success rate.

Malicious Firmware and Modified Hardware: This attack
setting extends the previous setting, in which the adversary
extracts the PUF response from a captive legitimate device. In
this setting, the counterfeit device is not completely identical
to the edge device; instead, it contains specific hardware de-
signed to defeat JULIET-PUF. Such counterfeit device should
minimally contain a sensitive timer, a temperature sensor, a
large amount of non-volatile memory to store the extracted
PUF responses, and, finally, a battery backup which enables
the sensors to work even when the device is turned off.
This is a considerable modification of the original hardware,
which immediately renders the OEM overproduction use case
irrelevant, since the hardware used for the original edge device
cannot be used in this attack setting. This fact, along with the
costs associated with the additional hardware and developing
and testing the counterfeit device, make this approach finan-
cially impractical for the IoT edge device use case. While,
in principle, an adversary can use advanced invasive hardware
modification techniques such as focused ion beam (FIB) circuit
editing to modify an existing device’s JULIET-PUF response
to match the response of another device, the cost of doing so
is prohibitively expensive, thus making it even more irrelevant
to the counterfeiting use case [23].

DDoS Attacks: In this attack setting, the adversary makes
repeated attempts to authenticate against the cloud server.
Although the adversary is unable to perform a successful
authentication, because it does not possess the correct response
to the challenge sent by the server, given an effective DDOS
attack, it can make the authentication service unavailable.
By doing so, the adversary will effectively prevent authentic
devices from being able to connect to the server for the
duration of the attack. This form of attack affects our system

as well as any other server-based system.
Brute Force Attacks: In this attack setting, the adversary

makes repeated attempts to authenticate against cloud server,
in a trial and error fashion, with the aim of eventually sending
the correct response to the challenge sent by the server. In
relation to standard brute force scenarios, JULIET-PUFmakes
it particularly difficult for the adversary, since the challenge
changes with each authentication attempt, increasing the space
of responses which must be enumerated. However, we estimate
that if the adversary knows how the scheme works, the range
of possible responses can be reduced.

Modeling Attacks: In this attack setting, the adversary has
a limited set of CRPs and tries to create a model that predicts
the PUF response to a given challenge [24]. JULIET-PUFcan
be vulnerable to such an attack if not crafted with caution. In
our scheme, the challenge is the duration of the power glitch
performed on the device. If an adversary can obtain a raw
CRP response with a short glitch duration, this response can be
used to predict the response in the case of a longer glitch. For
example, lets examine the case where the SRAM is initialized
to logical 1. The adversary has possession of a single CRP, i.e.
glitch duration of time t (the challenge) denoted as Ct, and a
response R which is the values of the SRAM after performing
the challenge. We denote Ri as the i’th bit in the response. If
Ri = 0 after performing Ct, there are 2 options in such case:
(a) Ri is random
(b) Ri is 0-skewed

In case a the adversary can learn nothing about the value
of Ri in other challenges. On the other hand, case b means
Ri needs roughly t seconds glitch to reach its stable state
0, thus, for any C ′t where t′ > t the adversary can predict
Ri = 0. To overcome such an attack, the response should
be processed before it is sent (for example by hashing or
encryption) to prevent its raw contents from being accessed
by an adversary. Such a hashing scheme should be carefully
chosen, considering the low signal to noise ratio of the
recovered PUF signal.

C. Related Work

Many studies have focused on SRAM-PUF’s design and
evaluation, with the aim of improving its characteristics,
particularly its reliability and its unpredictability.

Physically unclonable functions were initially introduced in
2002 by Pappu et al. [25] as physical one-way functions that
can be used to allocate and authenticate unique identifiers
by converting physical variations into fixed-length strings of
binary digits. In [26], Gassend et al. extended the PUF domain
by introducing silicon physical random functions, which are
designed to identify and authenticate integrated circuits (ICs)
using manufacturing variations across ICs. Relying on the
statistical delay variations of wires and devices on different
ICs, they created a parameterized self-oscillating circuit for the
characterization of ICs. In recent years, this implementation
has been referred to as a Ring Oscillator PUF. In addition to
the development of intrinsic PUFs based on delay measure-
ments, a method in which memory cells’ startup values are
measured and utilized for digital fingerprinting was developed.
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TABLE II
SECURITY ANALYSIS

Threats Standard SRAM-PUF JULIET-PUF

Eavesdropping and Replay Secure Secure
Malicious Firmware Insecure Secure
Malicious Firmware, Modified Hardware Insecure Insecure (impractical cost)
DDOS Insecure Insecure
Brute Force Insecure Secure
PUF Modeling Insecure Insecure

This method is now known as SRAM-PUF, and it is widely
used [27], [28].

Several studies focused on designing an SRAM-PUF with
improved characteristics. In [29], Garg et al. introduced a
technique for improving the reliability of SRAM-PUF, uti-
lizing its aging effects. By controlling the polarity of aging
in SRAM arrays, the proposed technique maintains the uni-
formity of SRAM-PUF, i.e., an even distribution of ones and
zeros. After achieving the target uniformity, they improved
the reliability by aging the SRAM arrays further. In [30],
Aung et al. analyzed SRAM-PUF characteristics found in
IoT microcontrollers using temporal majority voting (TMV)
and data remanence methods. Their analysis covered SRAM-
PUF’s biasness, uniqueness, and stability, which they exam-
ined on different microcontrollers. Using these methods, they
were able to obtain an SRAM-PUF of 128 bits out of 512, with
an error rate of 3.77× 10−8 and stability of 99.983%, results
that make it suitable for simple microcontrollers. In [31],
Böhm et al. implemented an SRAM-PUF on microcontrollers
and by using repetition correction code, they reduced the error
rate to 6.85×10−7%. In [16], Xiao et al. used bit analysis and
bit selection algorithms to reduce the high test time and design
overheads of SRAM-PUFs, which have made them unsuitable
for high volume production. In the process, they pointed
out conditions in which stable SRAM cells can be selected
for PUFs. In [32], Xu et al. proposed a DRV-based hash
function which is insensitive to temperature and enables the
implementation of a PUF that utilizes the variation sensitivity
of SRAM data retention voltage (DRV), the minimum voltage
required for a cell to maintain its state. In [33], Xu et al.
showed that when instances of identical storage cells are
compared with respect to failure propensity, it is possible to
create a high quality PUF. In this context, they proposed a
failure-based PUF which uses failures caused by control of
power gating durations.

Other studies have focused on investigating the suitabil-
ity of different SRAMs for use as PUF primitives. In [1],
Barbareschi et al. investigated the suitability of various types
of 90nm SRAM devices based on PUFs’ quality parameters:
reliability, uniqueness, and uniformity. This was done by
studying the behavior of the SRAMs’ startup patterns under
different power supply strategies. In [34], Schrijen et al.
investigated different SRAM memories, which were used as
PUF primitives, in SRAM design on technologies varying from
65nm to 180nm, based on PUFs’ quality parameters, empha-
sizing reliability and uniqueness. Using the startup patterns

of different SRAMs, measured under various conditions, such
as temperature and applied voltage, the authors were able to
show that all of the examined SRAMs are suitable for use as
PUFs.

Although SRAM-PUF is a great solution for authenticating
resource-constrained devices with limited computation power
and memory, relying on just SRAM is often insufficient,
because SRAM is considered a weak-PUF. As stated by
Guajardo et al. in [27], a weak-PUF is a PUF which has a
small number of CRPs, while a strong-PUF has a large number
of available CRPs, so large that the likelihood of a time-limited
attack based on exhaustively measuring the CRPs to succeed is
negligible. Transforming SRAM-PUF into a strong PUF is not
an easy task. In [35], Farha et al. proposed an SRAM-PUF-
based authentication scheme suitable for low-resource IoT
edge devices; the proposed scheme uses re-ordered memory
addresses as challenges and the corresponding SRAM cells’
startup values as responses. In a comment paper on this
work [36], Amar et al. analyzed this scheme and showed that
while it claims to offer strong PUF functionality, the scheme
creates a weak PUF. In fact, an active attacker can read out
the device’s entire PUF response after a very small number of
queries are exchanged with the prover.

Several studies have focused on ways of overcoming PUFs
by predicting the response of the device. For example, in [7],
Cortez et al. suggested a method for the analysis and predic-
tion of the SRAM signature based on variables such as the
transistor length, material thickness, temperature, and voltage.
To do so, the authors calculated the static noise margin (SNM)
value and analyzed its variability in changing environments.
In [12], Zeitouni et al. introduced a side-channel attack,
which utilizes the remanence decay in volatile memory, and
demonstrated how a non-invasive clone attack can be launched
against SRAM-PUFs. They also showed that this attack is
feasible against small memory-based PUFs, even without the
use of specialized lab equipment.

Although SRAM is commonly used as a PUF due to its
simplicity and availability in many electronic devices, it has
a major drawback - it decays and becomes less consistent
over time. Some physical phenomena in a silicon integrated
circuit cause the circuit’s parameters to slowly change and
thus change the PUF. Maes et al. [37] studied the reliability
of SRAM-PUF in light of the data-dependent silicon aging.
The authors also proposed anti-aging techniques for SRAM-
PUFs which are based solely on data-dependent silicon aging
effects observed in regular SRAM cells over the integrated
circuit’s lifetime; the proposed techniques can be used on any
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standard SRAM without incurring pre-deployment overhead.

D. Conclusion

In the IoT domain, new security issues are emerging, while
traditional security issues are becoming more difficult. There-
fore, the need for entity authentication of end devices, which is
considered an essential aspect of IoT system security today, is
growing. Because traditional ID mechanisms are infeasible in
IoT devices due to the constrained runtime environment of the
edge devices and the additional costs and deployment issues
they introduce, alternative solutions for securing IoT compo-
nents are required. In light of this, we propose JULIET-PUF,
a novel PUF-based unique ID generation method that relies
on SRAM content retrieval after power glitches of various
durations. Our evaluation on a dataset of traces from multiple
units of a popular commercial off-the-shelf IoT device shows
that JULIET-PUF offers a considerable security advantage over
standard SRAM-PUF in the counterfeiting threat model, all
without requiring any additional hardware costs. Future work
may focus on adapting JULIET-PUF for use in other domains,
such as cellular devices and computer components.
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