
Pixel Thief: Exploiting SVG Filter Leakage in Firefox and Chrome

Sioli O’Connell1*, Lishay Aben Sour2*, Ron Magen2*, Daniel Genkin3, Yossi Oren2,4, Hovav Shacham5,
and Yuval Yarom6

1The University of Adelaide
2Ben Gurion University of the Negev

3Georgia Institute of Technology
4Intel Corporation

5UT Austin
6Ruhr University Bochum

Abstract
Web privacy is challenged by pixel-stealing attacks, which
allow attackers to extract content from embedded iframes
and to detect visited links. To protect against multiple pixel-
stealing attacks that exploited timing variations in SVG filters,
browser vendors repeatedly adapted their implementations to
eliminate timing variations. In this work we demonstrate that
past efforts are still not sufficient.

We show how web-based attackers can mount cache-based
side-channel attacks to monitor data-dependent memory ac-
cesses in filter rendering functions. We identify conditions
under which browsers elect the non-default CPU implemen-
tation of SVG filters, and develop techniques for achieving
access to the high-resolution timers required for cache attacks.
We then develop efficient techniques to use the pixel-stealing
attack for text recovery from embedded pages and to achieve
high-speed history sniffing. To the best of our knowledge,
our attack is the first to leak multiple bits per screen refresh,
achieving an overall rate of 267 bits per second.

1 Introduction

In recent decades, the Internet has grown from a research-
oriented network aimed for specialists into a communication
network that encompasses all aspects of modern life. In typ-
ical use, a web browser accesses multiple websites, often
concurrently. Each of these websites may process private, per-
sonal, and even sensitive information about their users. Even
the fact that a user has merely accessed a specific website may
reveal personal information about the user’s beliefs, health,
or social connections. Consequently, preventing information
leaks within the browser is of paramount importance.

One of the main tools for preventing cross-site information
leaks is the same-origin policy (SOP), which prevents code
of one website from accessing resources on other websites.
This property holds even if the victim website and the attacker

* Equal contribution first author

Figure 1: Overview of a pixel-stealing attack

website appear together on the user’s screen, through the use
of the HTML iframe element.

Beyond code access, information can leak from websites
through the way that they are displayed on the user’s screen.
This includes, for example, the rendering of inline iframes,
which embed content from one website into another web-
site, and of links, which are rendered differently if the user
has visited the linked site. To protect against such attacks,
web browsers do not allow websites access even to their own
rendered image. Browsers do, however, allow limited manipu-
lation of the displayed contents through the use of SVG filters,
which perform image transformations, such as recoloring,
resizing, blurring, and more.

Past works have shown how to exploit minute data-
dependent timing variations in SVG filters for pixel-stealing
attacks [4, 36, 63]. Figure 1 shows the general structure of
such filter-based pixel-stealing attacks. Here, the attacker lures
the user to a malicious website that displays sensitive con-
tents, e.g. in an iframe, applying SVG filters to the contents.
By measuring the time it takes to render the page, the attacker
can recover information about one of the pixels in the iframe.
Changing the relative positions of the filters and the image, the
attacker can target different pixels, eventually reconstructing
the displayed contents.

A fundamental limitation of these attacks is their depen-
dence on measuring the time it takes the browser to render a
frame. This limits the leak to at most one bit per refresh, or no

more than 60 bits per second. Moreover, browser vendors are
aware of the risks of timing-based pixel-stealing attacks, and
have modified their filter rendering code to remove observ-
able, content-dependent timing differences in filter execution
time [12, 13, 14, 46]. Recent works have demonstrated the
feasibility of exploiting CPU and GPU frequency scaling for
pixel-stealing attacks [64, 68]. These attacks, however, have
even lower leakage rates. Thus, we ask: Are high-capacity
pixel-stealing attacks on modern browsers feasible?

1.1 Our Contribution

In this work we abuse SVG filters to send information through
a cache-based side channel. We identify content-dependent
memory access patterns in the CPU implementation of the
feComponentTransfer filter. Because browsers default to
GPU implementations, we first identify conditions under
which the browsers elect to use this CPU version. We find
that Chrome lacks support for many system configurations,
forcing CPU execution on unsupported systems. For Firefox,
we identify sequences of filters that force CPU execution even
on otherwise supported systems.

To exploit the filter, we develop techniques to amplify the
signal, allowing capture by a realistic side-channel attacker.
We then design a communication protocol that allows the
attacker to identify the cache location that the filter uses, and
to transmit data through the channel. Our protocol allows us
to overcome the limit of one pixel per frame, which affects
all prior pixel-stealing attacks.

As an additional contribution, we show how to overcome
cross-origin-isolation policies in web browsers. These poli-
cies allow websites to either use high-resolution timers or to
embed contents of third-party websites, but not both. We note
that the attacker can use two websites, one to embed the victim
contents and the other to perform the cache attack. The at-
tacker can therefore use high-resolution timers in the browser,
without the need to resort to alternative timers [34, 59] or
amplification techniques [29, 31, 54, 55].

We present two attacks that demonstrate the effectiveness
of our technique. The first attack uses pixel stealing to observe
text in the victim page. For that, we develop techniques for
identifying a small number of regions that allow us to easily
distinguish between letters, and show how to use these regions
to accurately identify the displayed letters. We further show
that the technique can be used as an end-to-end attack that
leaks the Wikipedia identity of the victim.

Our second attack exploits pixel stealing for a history-
sniffing attack. We first show a straightforward approach that
leaks a limited number of links at a time. We then adapt the
technique of Stone [63] for detecting whether any site in a
given list has been visited. Finally, we devise an adaptive
approach that further increases the speed of history sniffing
under the assumption that the number of visited sites is sub-
stantially smaller than the total number of sites queried.

In summary, our contributions are as follows.
• We develop a simple approach to overcome cross-origin

policies, allowing us to have access to high-resolution
timers, while embedding third-party contents (Section 4).

• We show how to exploit the content-dependent memory
access patterns of the feComponentTransfer SVG filter
for pixel stealing. We design a transmitter (Section 5) and
a protocol (Section 6), demonstrating the first faster-than-
refresh-rate pixel-stealing attack.

• We show how to use our pixel-stealing attack to recover
text from the victim page (Section 7).

• We demonstrate a fast history-sniffing attack on a modern
browser (Section 8).

2 Background

2.1 Cache Attacks

Caches. To reduce the average latency of memory accesses,
modern processors exploit program locality by introducing
caches that store recently accessed memory locations. Mod-
ern x86 processors provide several levels of caches, where
each core has private L1 and L2 caches, and all cores share
access to a common last level cache (LLC). The caches in
x86 processors are set associative, that is, the caches are orga-
nized as a collection of sets, each containing multiple ways,
and each way in turn can store a single fixed-sized block of
memory known as a cache line.
Cache Timing Attacks. Because the state of the cache de-
pends on prior computation and, at the same time, affects
code execution time, sharing caches can lead to information
leaks [19], leading to a large number of attacks [21, 23, 40, 50,
51, 52, 53, 60, 61, 72]. Attacks typically detect the difference
in access time, depending on whether the memory location is
cached (a cache hit) or not (a cache miss).

In a Prime+Probe attack [40, 51, 52], the attacker first fills
a cache set to be monitored with data. After waiting a while,
the attacker accesses the previously cached data. A short
access time indicates that the data is still cached, implying that
the victim has not accessed data that maps to the monitored
cache set. Conversely, a longer access time indicates that
some of the attacker’s data has been evicted from the cache
set, presumably due to victim access.
Cache Attacks on Browsers. Cache attacks have been
applied in browsers for website fingerprinting [50, 60, 61],
keystroke timing [39], leaking cryptographic keys [20], and as
a step in other attacks, such as Rowhammer [22] or transient
execution attacks [1, 33, 41, 55].

2.2 Pixel Stealing

SVG Filters. Webpages often visually present sensitive in-
formation, such as cross-domain embedded content or links,
which change visual appearance based on whether the link

was previously visited by the user. To protect this information,
browsers isolate JavaScript executing on a webpage from the
rendered appearance of that webpage. Pixel-stealing attacks
break this isolation – they allow malicious webpages to re-
cover their rendered appearance, and therefore to recover any
rendered sensitive content.

In this work we exploit SVG filters, which are small func-
tions that operate on web page elements after the elements
are rendered, but before they are displayed [70]. Filters are
composed of several filter elements, primitive operations that
are parameterized and combined to form the complete filter,
and are specified in XML markup. The possible list of filter el-
ements is specified by the SVG standard, and includes several
standard image-filtering operations such as color mapping
and convolutions. Filters are used to apply artistic effects that
may be difficult or impossible to achieve otherwise, such as
blurring, to parts of the webpage.
Abusing Filters. Stone [63] showed that data-dependent code
paths in filter implementations cause timing variations that
can be used to leak pixel data. In response, browser vendors
removed all data-dependent branching from their SVG filter
implementations [12, 46], as is now required in the formal
W3C documentation [70].

More recent works demonstrated that it is possible to leak
data due to variations in the processing time of floating
point instructions, even in the absence of data-dependent
branches [4, 35]. To mitigate this threat, browser vendors
now enable CPU flags that ensure these floating-point instruc-
tions no longer exhibit excessive slowdown when operating
on specific floating-point values [13, 47]. Andrysco et al. [5]
has since suggested the use of cryptographic constant-time
programming in SVG filters to ensure that the execution time
remains constant-time, although no vendor seems to have
employed such an approach.

Two recent works show that execution of SVG filters con-
strain GPU power or thermal budgets, causing data-dependent
voltage and frequency scaling that can be observed through
timing [68] or via a counting thread [64].

2.3 History Sniffing.
The threat of recovering which websites a user has visited
is well established [27, 28, 69]. To protect against attacks
that query the :visited CSS selector [8, 16, 56] browsers
limit the styles that can be applied to a link using this selector,
avoiding styles that change the page layout, access external
resources, or require significant computation [44, 48].

Other techniques for executing history-sniffing attacks
have been proposed, such as measuring various browser
caches [7, 17, 25, 62], tricking users into exposing their his-
tory by interacting with the webpage [32, 49], or by measuring
the time taken for a request to be processed by the server [58].

Stone [63] showed that pixel-stealing attacks can be used
to execute history-sniffing attacks by observing whether a link

is rendered as visited or unvisited. Several follow up works [4,
35, 36, 63, 64, 68] have found various other mechanisms
for pixel stealing. They all, however, suffer from an inherent
limitation – they can extract at most one bit of information
per rendering of the screen.

2.4 Cross-Origin Isolation
The Cross-Origin Opener Policy and Cross-Origin Embedder
Policy (COOP/COEP) along with the frame-ancestors di-
rective of the Content-Security-Policy header are three
related policies that can be configured by web developers to
control how their pages can be embedded into other websites.
Unlike X-Frame-Options, which only allow developers to
block all embedding or to restrict embedding to pages from
the same origin, these policies provide more fine-grained con-
trol over embedding. In particular, COOP/COEP requires that
the embedder and the embedded website mutually trust each
other – signalled by the use of these policies. That is, in order
for a website to embed another website while using these
policies, both websites must opt-in to these policies, and both
websites must add each other to an allow-list.

In addition, vendors have recently started to use
COOP/COEP to signal whether it is safe to allow the web-
site to access two sensitive APIs: high-precision timers
and SharedArrayBuffers. Websites that do not enable
COOP/COEP are allowed to use iframe elements to em-
bed other websites, excluding those that enable COOP/COEP
or X-Frame-Options, but are restricted from accessing high-
precision timers and SharedArrayBuffers. Conversely, web-
sites that enable COOP/COEP have access to high-precision
timers and SharedArrayBuffers, but can only embed web-
sites according to the rules specified earlier.

3 Attack Model

We consider an adversarial model used by so-called click-
jacking attacks [26]. Specifically, we assume that the vic-
tim visits a webpage which allows an attacker to execute
JavaScript, for example the attacker lures the victim to visit a
malicious webpage or the attacker masquerades their attack
as an advertisement and embeds it into another otherwise
benign webpage. We further assume that the attacker can en-
tice the victim into interacting with the malicious website
at least once, for example by clicking on a button to accept
cookies. Finally, we assume that cross-origin content embed-
ded by the attacker is not protected with X-Frame-Options,
frame-ancestors, or COOP/COEP headers.

The requirement for interaction is not strictly necessary to
recover same-origin content, such as the history stealing attack
presented in Section 8, and removing the requirement would
result in a model similar to previous pixel-stealing works,
however for simplicity of explanation we treat all attacks
under the stricter click-jacking model.

Hardware and Software. We assume that the victim is
using a machine equipped with an Intel processor featuring
an inclusive cache, that the user uses either Firefox V92 (or
later) or Chrome V92 (or later). Section 7 assumes a version
of Firefox that does not feature the Total Cookie Protection
or that the feature has been disabled. For Chrome, we were
unable to find a method to force the use of the CPU to render
filters. We therefore assume that the user uses a device that
is on the software rendering list [15]. This includes devices
using Linux with open-source drivers and devices that use
Mac OS with hardware that has not been added to an allow
list.
Experimental Setup. Our experiments are performed on a
machine equipped with an Intel i7-6700K CPU with 8 GiB
of RAM, running at 2133 MT/s. Measurements throughout
the paper are collected using Firefox V102. We have con-
firmed that the pixel-stealing attack primitive works on both
Firefox V108 and V112, enabling the history-sniffing attack
to be carried out. We note that in these versions of Fire-
fox an unrelated open bug prevents cross-site filtering from
working altogether, inadvertently preventing our cross-site
pixel-stealing attack as well. On Chromium V113, we use
the --disable-gpu flag to emulate the device being included
in the Software Rendering List thereby causing filters to
be rendered on the CPU. The attack code can be found at
https://github.com/0xADE1A1DE/PixelThief

4 Overcoming Cross-Origin Isolation

Recall that for a website to access high-resolution timers or
SharedArrayBuffers, the website must use COOP/COEP
headers. If that website is to embed or be embedded within a
cross-origin website, then that cross-origin website must also
use COOP/COEP. Further, both websites must mutually add
each other to allow-lists for embedding.

To mount an attack in such a setting, the victim website is
not only required to use COOP/COEP, but the victim website
must also add the malicious website to an allow-list. While
wildcards are allowed, and it may be plausible that overly
permissive allow-lists exist in the wild, this still prevents an
attacker from mounting attacks on the plethora of websites
that do not use COOP/COEP. For these reasons, we consider a
setting in which the victim website does not use COOP/COEP.

Such a setting seems to imply a mutually exclusive sce-
nario for the attacker: either they can access high-resolution
timers and SharedArrayBuffers, or they can embed victim
websites, but not both at the same time.

We note that several recent works have investigated the
setting of reduced-precision timers, and there are now several
advanced techniques that use transient execution to allow high
temporal accuracy side-channel attacks to be mounted with
reduced-precision timers [29, 31], but before we deploy such
advanced techniques, we first ask: Does the mutual exclusion
implied by COOP/COEP actually exist?

Throughout the rest of this section, we show that the answer
is no, provided that we are willing to swap the standard pixel-
stealing adversarial model with the stricter click-jacking [26]
model. The key difference between the two models is the
requirement of interaction from the victim.
Bypassing COOP/COEP. We use this interaction to open
up a second tab in the browser. The first tab loads a page
served with COOP/COEP headers. This page can thus ac-
cess high-resolution timers and SharedArrayBuffers, but it
cannot embed any cross-origin content. The second tab loads
a page that is not served with COOP/COEP headers. In this
page the opposite holds – cross-origin content can be em-
bedded with iframe elements, but high-resolution timers and
SharedArrayBuffers cannot be accessed.

We then split our attack between these two pages. Any part
of the attack that needs to access high-resolution timers or
SharedArrayBuffers is placed on the first page, and any part
of the attack that needs to interact with cross-origin content
is placed on the second page. The two pages cannot directly
communicate with each other because of the COOP/COEP
headers. They can both, however, send messages to a server
using WebSockets, and the server can relay the messages
between the two pages, as we demonstrate in this work.

Figure 2: Achieving a high resolution timer. The server sends
two pages to the victim operating under different security
models, the first embeds the victim page (blue webpage, left)
the second mounts the cache attack.

Figure 2 gives an overview of this approach. The server
serves two pages to the victim: the first page operates under
the old security model, and can therefore embed the victim
page (blue webpage on the left), while the second page oper-
ates under the COOP/COEP security model, and is therefore
able to mount the cache attack (orange webpage on the right).
(#1) The server sends a command to the first page to manipu-
late the victim page into leaking data. (#2) Data leaks through
the cache from the victim to the second page. (#3) The second
page recovers the leaked data and sends it back to the server.
Same-Origin Content. In cases where the attack interacts
with same-origin content, such as the history-sniffing attack
presented in Section 8, the two-page architecture is not neces-
sary because same-origin content is allowed to be embedded

https://github.com/0xADE1A1DE/PixelThief

into the page while COOP/COEP headers are present.
Measurements throughout the paper use the single-page

architecture for same-origin content and the two-page archi-
tecture for cross-origin content.

5 Leaking Pixels

In this section we describe the pixel-stealing attack that forms
the basis for the other attacks we present in this work. Our
pixel-stealing attack reveals sensitive data displayed in parts
of rendered webpages by exploiting input-dependent memory
accesses in SVG filters.

Filter Table

...

Pream
ble 1

0
1
0
1
1
0
1

Victim
 C

ontent

Preamble Victim Content

Threshold

0101011010011000000

Scale Image
#2

Victim Content
#1 Attach Preamble

#3

Filter Combined Image
#4

Monitor Cache Activity
#5

Reassemble Image
#6

Figure 3: An overview of our attack. (#1) Embed victim
content. (#2) Isolate pixels in victim content. (#3) Embed
attacker content. (#4) Apply filter to both images. (#5) Record
memory accesses. (#6) Find memory accesses correlating to
attacker content then recover victim content.

Figure 3 presents an overview of how our attack functions.
The attacker embeds the victim image into their page (#1)
and uses CSS to isolate and scale chosen pixels (#2). The
attacker then inserts their own image above these pixels (#3)
to cause the filter to produce a predetermined sequence of
memory accesses. When the browser later renders the page,
the filter is applied to both images. The filter uses the value
of each of the pixels as an offset into a table (#4). In parallel,
the attacker mounts a cache attack to record memory accesses
to this table over time (#5). Finally, the attacker analyzes the
recorded memory accesses to find the predetermined sequence
of memory accesses that correlates with their own image.
Memory accesses after this sequence are attributed to the
victim image and can be recovered and rearranged with other
recovered pixels to reconstruct the full victim image (#6).

While the attack functions in both Chrome and Firefox,
Firefox’s implementation of the relevant filters is significantly
easier to describe. We therefore focus on Firefox for the re-
mainder of this section. We begin with a description of the
vulnerable SVG filter. Then, we introduce and overcome the
browser’s use of GPU-based implementations. Finally, we
end the section with a discussion of measurement frequency
and how it affects the performance of the attack.

5.1 The feComponentTransfer Filter
feComponentTransfer is an SVG filter element that allows
designers to remap the colors of their webpages. It can be
used to implement various recoloring effects, such as sepia or
greyscale. To that aim, the filter element operates over each
pixel in the input image individually. First, it splits each pixel
into its component red, green and blue values. It then maps
each of the components’ values, in addition to its alpha value,
to target values based on functions defined by the designer.
Finally, it merges the components back together to form the
pixel color in the output image. Listing 1 (Lines 2–6) shows
an example of how such a filter is defined.

1 <filter id="filter_id">
2 <feComponentTransfer>
3 <feFuncR type="discrete" tableValues="0

1"></feFuncR>↪→

4 <feFuncG type="discrete" tableValues="1
0"></feFuncG>↪→

5 <feFuncB type="discrete" tableValues="0.3
0.6 0.9"></feFuncB>↪→

6 </feComponentTransfer>
7 <feGaussianBlur stdDeviation="0" />
8 </filter>

Listing 1: A filter that executes feComponentTransfer and
then uses feGaussianBlur to blur the result.

1 void TransferComponents(uint8_t input[N],
2 uint8_t output[N],
3 uint8_t tables[3][256]
4) {
5 for (int32_t i = 0; i < N; i += 3) {
6 for (uint32_t c = 0; c < 3; c++) {
7 output[i + c] = tables[c][input[i + c]];
8 }
9 }

10 }

Listing 2: Firefox’s Implementation of feComponentTransfer.

Firefox’s feComponentTransfer Implementation. The
feComponentTransfer specification allows for several ways
of defining the mapping of each channel to its target color,
including identity mapping, linear and gamma maps, and inter-
polated and discrete tables [43]. Regardless of the definition
chosen, internally Firefox uses a 256-entry lookup table for
implementing each of the mappings. These tables are filled
in during a precomputation phase, in which the values in the
filter definition are mapped from floating point numbers be-
tween 0 and 1 into integers between 0 and 255, and the rest of
the values of the table are interpolated according to the SVG
filter specification. Listing 2 shows a simplification of Fire-
fox’s implementation for feComponentTransfer in C-like
pseudo-code. Lines 1–4 define the function and its parameters.

The input and output parameters are the filter’s input and
output images, represented as interleaved 8-bit red, green, and
blue values. The last parameter, tables, holds precomputed
tables obtained by computing the functions defined in List-
ing 1. Line 5 iterates over each pixel in the input and output
images. Line 6 iterates over each of the component values for
each pixel. Finally, Line 7 applies the filter by performing a
lookup in the appropriate table.
Analysing feComponentTransfer Cache Access Pat-
terns. We now proceed to analyze the cache access patterns
of Listing 2. Throughout the analysis we assume that each
data element cached in the LLC, commonly referred to as a
line, is 64 bytes long. To increase cache efficiency, the cache
mapping function of the CPU aims to assign consecutive
lines in memory to different sets in the cache [42]. Assuming
that the data structure holding the tables is stored on a 4K
page boundary, each 256-byte table will therefore span four
different cache sets.

Consider a picture with two pixels, where the first pixel is
black (0,0,0) and the second pixel is white (255,255,255).
As before Lines 6 and 7 of Listing 2 iterate over each compo-
nent of each pixel, with Line 8 performing table lookups. A
side effect of accessing the table entries during lookup is that
accessed entries are cached within the CPU cache hierarchy.
That is, applying the filter to the black pixel causes the first
64 entries of the table to be loaded into the cache. Similarly,
processing the white pixel causes the last 64 entries of each
table to be cached. Consequently, an attacker who can tell
apart accesses to the cache set holding the first 64 entries from
the last can detect whether the pixel was black or white.

5.2 Executing feComponentTransfer on
the CPU

To improve rendering performance, Firefox version 92.0 and
newer attempt to offload image rendering to the GPU. This
poses a challenge to adversaries that attempt to exploit vulner-
abilities in CPU implementations of filter elements, simply
because the vulnerable implementations do not get executed.
We now describe how to overcome this issue, forcing Firefox
to execute any filter element on the CPU.
Filter Elements without GPU Implementations. Although
Firefox includes GPU-based implementations for many filter
elements, some filters are still only supported through CPU-
based implementation, see Appendix B for a complete list.
One such example is feGaussianBlur, which applies Gaus-
sian blur [67] to an image. We observe that none of the CPU-
only filters are suitable for performing a side-channel attack.
Most of these filters, including feGaussianBlur, achieve
their effect through a convolution of the image and, as such,
do not exhibit data-dependent memory access patterns that
leak image data through the cache.
Forcing CPU Computation. Being unable to construct
an attack using filters with only CPU-based implementa-

tions, we searched for methods for forcing Firefox to fall
back to executing feComponentTransfer on the CPU. To
that aim, we investigated Firefox’s behavior when com-
bining filter elements, especially when mixing CPU- and
GPU- based filters. More specifically, when we combine
feComponentTransfer with feGaussianBlur, we discover
that both filters are executed on the machine’s CPU (Firefox
still computes feComponentTransfer on the GPU if the fil-
ters are combined in the opposite order). We notice that this
observation holds true for all CPU- and GPU-based imple-
mentations: in the case that the last filter is CPU-based, the
entire filter stack will be executed on the CPU, regardless of
the number of GPU-based filters present.1

Our Filter Stack. To exploit this behavior, we use the filter
shown in Listing 1. It consists of an feComponentTransfer
filter element (Lines 2–6), connected to the inputs of an
feGaussianBlur filter element (Line 7). As Firefox does
not provide a GPU implementation for feGaussianBlur, it
uses the CPU implementation for this filter. Moreover, as
observed, this also results in using the CPU-based imple-
mentation showed in Listing 1 for feComponentTransfer.
We note that the choice to use feGaussianBlur is arbitrary.
We can use any other CPU-only filter to force execution of
feComponentTransfer on the CPU.
Chrome. Chrome exhibits similar behavior to Firefox, in
which Chrome will prefer to execute feComponentTransfer
on the GPU. While we were unable to find an analogous
method to force Chrome to execute feComponentTransfer
on the CPU, we note that Chrome has an extensive GPU
block-list that disables various aspects of GPU acceleration
for specific hardware configurations. This includes devices
with outdated drivers, devices running Windows Vista or ear-
lier, devices running Linux with third-party drivers, and de-
vices running MacOS X without a GPU on the allow-list [15].
An attacker would therefore be limited to attacking a victim
with a device operating in one of these configurations. In our
experiments, we emulate this scenario using the --disable-gpu
flag, which disables GPU support in Chrome.
Signal Amplification. Cache attacks have a limited mea-
surement frequency, which affects their ability to distinguish
between events that occur rapidly [3, 53]. Recall that our
goal is to perform a cache attack on the implementation of
feComponentTransfer in Listing 2. To recover the image,
we want to monitor each table lookup performed by the filter.
The filter, however, is too fast – it performs an access every
few cycles, whereas a typical cache attack requires hundreds
or even thousands of cycles per measurement [3, 40, 53, 72].

Past works have explored methods for reducing the execu-
tion speed of the transmitter [2, 3, 23, 45, 65], but these rely
on features that are not available from JavaScript, hence we
cannot use them. Instead, we build on past works [4, 36, 63]

1We note that explicit linking of filter-elements using in attributes inter-
feres with this behavior and prevents GPU-based filters from executing on
the CPU.

that stretch the image such that the filter must perform re-
peated filter table accesses with identically colored pixels. As
Firefox breaks up the screen into 256×256 px tiles, we stretch
each pixel horizontally 256 times and vertically 256 times,
divided by the number of pixels we want to measure in every
attack iteration, as described below.

6 Recovering Pixels

In Section 5, we construct the transmitter side of our pixel-
stealing attack. We now turn our attention to the receiver
side. We first explain how we prepare for mounting a cache
attack. We then describe the cache attack we use. Our aim is
to construct a fast attack that allows a high transfer rate. We
selected the Prime+Probe [40, 51, 52] attack for this purpose.
As discussed in Appendix A, we also evaluated the window-
less Prime+Scope method of Purnal et al. [53], but discovered
that it is less appropriate for our setting. We now discuss
how we synchronize the transmitter and the receiver, then we
evaluate our pixel-stealing setup described in Section 3.

6.1 Detecting Transmitter Communications

Recall that unlike other attacks mounted on filters [4, 36, 63],
we measure leakage in parallel to filter execution, in order to
perform multiple measurements and leak multiple bits of sen-
sitive information from a single filter execution. The attacker,
however, does not know if its cache measurement occurred
while the browser filtered the webpage, or while the browser
was performing some other tasks. Throughout this section,
we describe how we detect whether cache measurements are
transmitter communications or noise from other processes,
and how we leverage the ability to detect transmitter commu-
nications to establish the communication channel. We first
assume that the cache sets to be monitored are known to the
attacker, and then show how these sets can be discovered.
Adding a Preamble. To detect the beginning of a trans-
mission, we follow a standard technique in communications
and introduce a packet preamble. The preamble serves two
functions – first, it allows the receiver to detect the start of
transmission. Second, because its contents are known, it al-
lows the receiver to match its clock rate, which is based on a
free-running counting thread, to the rate of the sender. Recall
that the signal is encoded into cache activity by moving an
attacker-controller filter over a page containing victim content.
We insert the preamble into the signal by prepending a known
image into the page, just before the victim content, such that
the filter will operate over the preamble first, and then process
the sensitive information.

Listing 3 shows how the preamble is placed onto the at-
tacker webpage. Lines 1 and 6 apply the filter to the preamble
and the sensitive content. Line 2 displays the preamble as an
image on the screen. Lines 3–5 display the sensitive content

1 <div style="filter: url(#filter_id);">
2
3 <div>
4 <!-- sensitive content -->
5 </div>
6 </div>

Listing 3: Preamble construction

on the screen. Since the filter goes over the image first hor-
izontally and then vertically, the filter will first process the
preamble image, and then the sensitive content.
Detecting a Preamble. With the transmitter equipped to send
a preamble, we move to preamble detection in the receiver.
Recall that the exact rate of the receiver’s counting thread is
not known to the attacker, and may even change over time.
Thus, it is not possible to simply search the side-channel trace
for the preamble, since it is stretched in time by an unknown
factor. Instead, we search for the preamble at multiple differ-
ent possible stretching factors. We speed up this process by
first processing both the preamble and the trace using run-
length encoding. In this representation, stretching in time is
equivalent to multiplying by a constant. Once the preamble
is found, the attacker knows both when the frame starts, and
what is the appropriate data rate at which it should be sampled.

We implement the detector in the following manner. Input
first passes in to a low-pass filter to remove high-frequency
noise, then samples are compared to a threshold to classify
them into cache hits and cache misses, then the recorded
trace is run-length encoded, and finally, a substring search is
performed to find the preamble. An example of cache activity
measured by our attack before and after filtering the signal
can be seen in figure Figure 4.

0 20 40 60 80 100 120
0

200
400
600
800

1,000

Approx. Time (µs)

Pr
ob

e
Ti

m
e

(a) Raw Data

0 20 40 60 80 100 120
0

0.5

1

Approx. Time (µs)

Fi
lte

re
d

(b) After Filtering

Figure 4: Cache Access Pattern Corresponding to a Preamble
of ’101011101010001’, as Recorded using Prime+Probe.

Packet Payload. As mentioned in Section 5.2, our attack can
be configured to leak different amounts of pixels per filter in-

vocation, depending on the chosen tradeoff between speed and
error rate. Each invocation of the filter essentially transmits a
“packet” of side-channel data, starting with the preamble and
following with the sensitive payload. After the packet pream-
ble has been detected using the method described above, and
the scaling factor has been determined, the receiver can apply
the same factor to the payload and read out the sensitive data.
Finding The Target Set. Until this point, we assumed the
attacker already knows which cache set will be used by the
filter processing code, and the only needs to detect when the
data is actually being transmitted. To detect which cache
set is being used by the filter processing code, the attacker
begins by constructing an eviction set for each cache set, using
the technique of Vila et al. [66]. After all eviction sets have
been constructed, the attacker repeatedly applies the filter to
a known image containing only the preamble, thus encoding
the preamble into the cache. Next, the attacker goes over
each possible set, recording a trace which is guaranteed to be
long enough to include at least one screen drawing operation
(practically, a little over 16 milliseconds), and searches for
the preamble in this trace. If the attacker detects the preamble,
they record the eviction set, so that future measurements do
not need to perform this calibration step. If the attacker does
not detect the preamble, they move to the next possible set.

6.2 Evaluation

Figure 5: A pixel-art Firefox logo leaked using our pixel-
stealing attack. From left to right: original image, ideal leak-
age, and actual leakage with payloads of one, four, eight, and
32 pixels.

In the previous section we described the final steps to detect
cache leakage from feComponentTransfer. In this section
we evaluate the effect of varying the payload size, the time
required to identify the target set, and the effect of noise on
the leakage rate and accuracy of the attack.

Throughout this section we mount our pixel-stealing attack
on an image of a pixel-art Firefox logo in Figure 5 (First from
the left). We serve a webpage that contains both the image
and the pixel-stealing attack code from a local HTTP server.
In Section 6.2.1, we evaluate the speed and accuracy trade off
in selecting the payload size. In Section 6.2.2, we evaluate
the capability of the attack to identify the correct target set.
Finally, in Section 6.2.3, we evaluate the attack in a more
realistic setting, with an additional concurrent workload.

We mount Prime+Probe only on the final entry in the
feComponentTransfer filter table, which corresponds to in-
dexes 192–256 of the table, and ignore accesses to any other

32168421
0

50

100

Pixels Per Packet

A
tta

ck
Ti

m
e

(s
)

32168421
0

0.1

0.2

E
rr

or
R

at
e

Attack Time
Error Rate

Figure 6: Attack time and error rates per packet sizes.

index. For each pixel, if an access to this cache line is ob-
served, then we assume that index 256 of the table was ac-
cessed. Otherwise, we assume that index 0 of the table was
accessed. Under these assumptions Figure 5 (Second from
the left) is what the image would look like if there were no
errors in the cache channel.

6.2.1 Varying Payload Size

First, we conduct an experiment to explore the trade off be-
tween speed and accuracy when selecting the payload size.
We measure the time requried to recover the entire image after
the attack setup has completed (i.e. setup times are excluded
from the measurement). We recover an image with 1, 4, 8,
and 32 pixels per packet. We recover the image 100 times
at each packet size, and report the median elapsed time and
the median error rate. Figure 5 (Third to sixth from the left)
shows representative recovered images at each packet size.

The main type of error introduced is a skewing of the loca-
tion of pixels in the image, since we leak a vertical column
of pixels, with as many pixels as can fit in a single packet,
all at once. Thus, if the attack incorrectly gauges the length
of a pixel in the signal, a pixel may be inserted or excluded
during recovery. Then, all following pixels in the column will
be incorrectly offset. The effects of these errors are more
visually apparent as the packet size increases.

Figure 6 shows quantitative results. We apply the Leven-
shtein distance [38] to measure the rate of errors, and then
select the median value from the 100 measurements. The me-
dian runtime to leak the entire 25px by 25px image in three
separate color channels (red, green, and blue) is 116s (16px
per second) at the slowest speed to 7s (267px per second) at
the fastest speed. As expected, the median error rate increases
as the speed increases, starting at 1% at the slowest speed and
increasing to 10% at the highest speed.

6.2.2 Finding the Target Set

Thus far, our evaluation has assumed an attacker that is ready
to leak an arbitrary number of pixels. We now move to mea-
suring the time taken to identify sets containing filter tables.

Work Side-Channel Measurement Target Mitigated Speed (b/s)

Stone [63] Filter Optimizations Page Rendering ✓ 10
Kotcher et al. [36] Filter Optimizations Page Rendering ✓ <1
Andrysco et al. [4] Subnormal Floats Page Rendering ✓ 16
Kohlbrenner and Shacham [35] Subnormal Floats Page Rendering ✓ 60
Wang et al. [68] Power Consumption Page Rendering ✗ 3
Taneja et al. [64] Power Consumption Page Rendering ✗ <1
This Work Memory Accesses Memory Accesses ✗ 267

Table 1: Comparison of pixel-stealing attacks. We report which channel pixels are leaked through, how each work extract
information from that channel, whether the presented attack has been mitigated, and the speed of the attack in pixels per second
(roughly).

Setup. To identify the set, we use the technique described in
Section 6.1. To validate our results, we used a patched version
of Firefox that prints the virtual address of the cache set that
holds the table. We use the methods of Maurice et al. [42] to
infer the ground-truth set index in the cache, and compare it
to the found index.
method. Since we may incorrectly detect a transmitted pream-
ble, we record several traces and if we detect a preamble at
least once while recording a set then we consider the set to
be a candidate. We then record the same number of traces
from the candidate again and if we detect preambles in at least
three of the traces then we consider the set to be the target set.
We repeat this process 21 times for each number of recorded
traces and report the median time to identify the target set and
the accuracy in Table 2. The median time to identify the target
set is 372–1257 seconds and 48–77% of the runs identify the
target set correctly on the first iteration of all eviction sets.

samples Time (s) Accuracy

40 1257.59±169 77%
30 999.56±152 67%
20 644.57±115 56%
10 372.39±60 48%

Table 2: Median time of identifying a target set and accuracy
of the first iteration.

6.2.3 System Noise

Finally, we evaluate our attack in a more realistic setting in
which the victim has other tabs open in the browser. We con-
tinue to use the same experimental setup as in Section 6.2.1,
but now we open a new tab in the browser and have that tab
play a video from YouTube. Figure 7 shows a representative
qualitative result, where we can see slight degradation in the
quality of the recovered image. With 100 runs of the exper-
iment and comparing to the results from Section 6.2.1, the

Figure 7: Left to right: Original, recovered image with zero
errors, recovered image without system noise, recovered im-
age with system noise.

median runtime of the attack is 476s (4.09×) with a median
error rate of 2.72% (+2.68×).

6.3 Comparisons to Existing Works

Table 1 compares the speed of our work with other works that
mount cross-origin pixel stealing attacks. All listed works
mount timing side-channel attacks on filters to extract cross-
origin pixels. We compare the channel that is used to leak
pixels, how each work extracts information from that channel,
whether the presented attack has been mitigated, and the speed
of the attack in pixels per second.

Earlier works exploit optimizations in the filters themselves
while later works, including our own, exploit leakage through
microarchitectural side-channels.

All previous works extract side-channel information by
measuring the time taken to render the page, indirectly mea-
suring the execution time of the filter. In contrast, our attack
extracts side-chanel information via measuring the execution
time of victim memory accesses, indirectly measuring mem-
ory behavior of the victim. This difference is what allows us
to achieve speeds that exceed the refresh rate of the display.

As with recent pixel stealing attacks, our work is yet to
be mitigated. Fortunately, generic countermeasures for cross-
origin pixel stealing attacks have been proposed, which would
mitigate all attacks, including our own. We discuss these
countermeasures in more detail in Section 9.

7 From Pixel Stealing to Text Stealing

We now show how to build upon our basic pixel-stealing
attack to create a text-stealing attack that can recover sensi-
tive text content from third-party websites. Unlike previous
works [63] which mount pixel stealing attacks on monospaced
fonts that can be easily pixelated, our work deals with text
rendered with vector-based graphics using proportional fonts
that feature kerning. In this section we describe the challenges
that this introduces and how to overcome them.

Figure 8: Pixel-based content continues to stay pixellated
after stretching (Left), whereas vector-based content is re-
sampled after stretching (Right). Both regions in the original
images are the same 3×3px size.

Text Rasterization. Our pixel-stealing attack scales the im-
age to select individual pixels and amplify them. Pixel-based
content can be scaled in such a way that it preserves the dis-
crete pixels of the original image. (Figure 8 Left). In contrast,
vector-based content, such as text, is represented using mathe-
matical expressions, which are sampled to produce an image.
When a vector-based image is scaled, scaling is applied to the
mathematical expressions, and then the image is sampled at
the display resolution (Figure 8 Right). Due to this difference,
using transformations to isolate the color of a single pixel is
simply not as effective for text.

Figure 9: Naive Text Stealing at 1, 2, and 4 Pixels per Packet

Pixel Stealing on Vector-Based Content. To illustrate the
problem, we perform our pixel-stealing attack on a classic
pangram, and present the recovered text in Figure 9.

Compared to pixel-based content there is greater visual
degradation, even when recovering one pixel at a time. De-
spite the visual degradation, there is sufficient redundancy
within this pangram to be able to easily read it. While this
is often the case for large pieces of text written in natural
languages, this is often not the case for data of interest to
attackers: victim’s names, identification numbers, and pass-
words are all examples of sensitive data that is short and often
contains very little redundant information.

A natural solution to this problem is to sample the image
at a higher resolution to minimize this effect. However to
double the resolution requires four times the samples, because
grows with the square of the side length, and therefore we ask
whether there is a better technique to extract text?
Stone’s Method. We answer the question in the affirmative
and present a solution that adapts Stone [63] binary-lookup
technique. Stone’s technique is based on the observation that
given an image of an unknown character, if we discover the
color of a carefully chosen pixel, we can exclude roughly
half of the possible characters. However, Stone applied their
tecnique to rasterized monospaced fonts, not proportional-
width fonts that are more commonly used to display text.

Figure 10: An example region in the letters ‘A’ through ‘F’
in the MS Sans Serif font. The region is entirely inside or
outside each letter.

Choosing a ‘Pixel’. We begin by resolving the problem of
identifying the color of ‘pixels’ with vectorized content. The
observation that underlies the ability to adapt Stone’s method
to vectorized content is that we can isolate and arbitrarily
scale any rectangular region of a character. Further, we can
select regions that lie entirely inside or entirely outside the
shaded part of a character, which guarantees the region only
contains a single color, and therefore we do not observe any
measurement artefacts. Figure 10 illustrates such a region for
the letters ‘A’ through ‘F’.
Finding Regions. We find such regions in an offline step, we
randomly choose x and y coordinates and use a fixed width
and height – these values are on the scale of one millionth of a
pixel. We use the Selenium browser automation framework2

to verify that the region lies entirely inside or entirely outside
all characters we want to distinguish.

After collecting enough of these regions, we can distin-
guish each character but we will have redundant regions. We
construct a minimized set of these regions using a greedy
search algorithm – we find which region provides the most
information and add it to a new set. This is repeated until
every symbol can be distinguished. While this approach does
not guarantee the theoretical minimum number of regions, we
find that it builds a set very close to the theoretical minimum.
Kerning. Next we resolve the primary problem that propor-
tional width fonts pose to the attack: kerning – the practice
of changing the spacing between letters to achieve a better
visual effect. With kerning, the position of a letter depends

2https://www.selenium.dev/

https://www.selenium.dev/

on the one or two letters that precede it. While kerning can
happen between three or more letters, we limit ourselves to
the common case of two letter kerning.

During region collection, we select a character at random
(including no character) and prepend it to all characters we
want to distinguish, we then continue with region collection
as normal. This results in a set of regions for every starting
character, which we then apply the minimization procedure
to.

7.1 Text Stealing Results

We now move to evaluate our text stealing technique. We
conduct two experiments. The first experiment measures the
rate at which we can recover random characters of text. The
second experiment we perform a proof-of-concept attack on
Wikipedia, recovering the username of a logged in user.

Measuring Data Rate. First, we measure the rate at which
our technique can steal randomly generated characters. We
use the technique as described in the previous section, starting
with the offline region collection on the default browser font
over the set of all letters. We then select the letters N, a, and
1 and leak each one ten times. To reduce the effects of noise
we sample the cache twelve times and perform a majority
vote. The median time to leak a letter is 56 seconds with an
accuracy of 93.3%.

Proof-of-Concept. We now move to show a proof-of-concept
attack on cross-origin content, specifically we recover the user-
name from a logged in Wikipedia account. We start by cre-
ating a new Wikipedia account and logging into it. Since we
are performing a cross-origin attack, we deploy our two-page
architecture as explained in Section 4 to bypass COOP/COEP.
For this experiment, we manually interact with the page so
that the second page is opened in a second tab.

Identifying Username Location. In order to steal the user-
name, we first need to identify where the username is. We
were able to side-step this in the previous experiment be-
cause we could simply apply the filter directly to the element
containing the text. However, when we apply the filter to
cross-origin content we must apply the filter to the iframe
which in turn applies the filter to the entire page.

We manually use getBoundingClientRect to roughly
guess where the username begins then refine this guess
through the use of a Selenium script. This script slightly
adjusts the starting position and then simulates the attack
using screenshots. This step is performed once as an offline
preparation step and once the script identifies the location of
the text, we hardcode it directly into the attack.

Stealing the Username. Finally, we perform the attack to
validate that we are able to steal text in a cross-origin setting
and recover the username of the account.

Figure 11: Layout of a Wikipedia User Name

1 .leak {
2 display: inline-block;
3 width: 1px;
4 height: 1px;
5 background-color: black;
6 font-size: 0;
7 }
8

9 .leak:visited {
10 background-color: white;
11 }

Listing 4: CSS Style for History Sniffing

8 History Sniffing

In this section, we show how to utilize our pixel-stealing
attack for history sniffing. We first describe a straightforward
approach that tests one or a small number of URLs at a time.
We then show how to use batch testing to improve sampling
rate when the number of visited URLs is expected to be low
compared to the total amount of possible URLs.

8.1 Straightforward History Sniffing

Several prior history-sniffing attacks rely on the observation
that the color of a link indicates whether it was visited or
not [4, 25, 36, 49, 63] We build on the same observation.

To implement the history-sniffing attack, we first create a
pixel whose color depends on whether a URL has been visited.
For that, the attacker page includes a CSS style similar to List-
ing 4. The first set of rules in the code specifies that elements
of class leak are rendered as colored boxes whose size is 1×1
pixels and whose color is black. The second rule changes the
background of such elements to white if they have the property
:visited, i.e. if they are a link to a URL that the user has vis-
ited in the past. When the class is applied to a link, e.g. using
the HTML code <a href="https://example.com"
class="leak">, the browser renders a 1× 1 pixel whose
color is white or black depending on whether the URL (in this
example https://example.com) has been visited or not.

Having created a pixel that shows whether a URL has been
visited, we can use the techniques of Section 5 and Section 6
to recover the color of the pixel, and therefore recover whether
the URL has been visited by the victim.

To sniff multiple URLs we repeat these steps to produce
several pixels for several different URLs, such that the color
of each pixel indicates whether its corresponding URL was

visited. We then apply the technique of Section 6 to leak the
color of each pixel simultaneously. After we have leaked the
color of the pixel, we replace the URL for each link which
causes the browser to recalculate the appearance of the link
which in turn updates the color of the pixel to reflect whether
the new URL has been visited or not.

8.2 Overview

Recall that history-sniffing attacks do not directly reveal vic-
tim browsing history, rather the browser is used as an oracle
to reveal whether a given URL has been previously visited by
the victim. Our attack is no different, we create a link with
a specific URL such as example.com and apply a style so
that the color of the link depends on whether the user has
previously visited the URL. We then use our pixel-stealing
attack to leak the color of the link which reveals whether that
specific URL has been visited. We call this the simple method.

In addition to the simple method, we use a second method
that exploits the behavior of the cache to query over a thou-
sand URLs in parallel. This variation of the technique varies
from other history-sniffing attacks. Typically the information
revealed is whether a specific URL has been visited or not.
Instead, this method uses the browser as an oracle to reveal if
any of the URLs in a given set have been visited but does not
reveal which. We call this the set query method.

The advantage of the set query method is that if none of
the URLs are visited then O(1) queries are sufficient to reveal
this information and if one URL is visited then a binary search
can be performed and O(logn) queries are sufficient to reveal
which one of n URLs has been visited. In contrast, the simple
method would require O(n) queries to reveal the information.

The set query method requires vastly less queries when the
number of visited URLs is small. However, as the number of
visited URLs increases, the number of required queries using
the set query method approaches O(n logn). For this reason,
our attack employs both the simple and the set query methods,
and switches between the two depending on which is likely
to reveal the information with the least queries.

8.3 Set Query

In this section we describe the set query optimisation.
Recall that our pixel-stealing attack crafts an SVG filter

with memory accesses that correlate to pixel values and these
memory accesses are measured through the use of Prime+
Probe. However, because memory accesses can be executed
much faster than Prime+Probe the SVG filter can perform
several memory accesses that correlate to different pixels be-
tween each measurement. The effect is that memory accesses
are ‘blurred’ together as the first access to a given piece of
memory brings it to the cache but any additional accesses do
not have any effect since the memory is already cached.

Avoiding Blurring. Such behavior is generally undesirable in
the pixel-stealing attack since the attack does not know which
pixels correspond to which memory accesses. For example, a
set of pixels containing exactly one white pixel has the same
cache behavior as a set of pixels containing multiple white
pixels since they are ‘blurred’ together. In the pixel-stealing
attack we completely remove blurring by stretching the image,
duplicating pixels, to such an extent that between any two
cache measurements, the majority of memory accesses by the
SVG filter correspond to one pixel value.
Behavior of Cache. In contrast, the set query method em-
braces this behavior to achieve much higher data rates. The
high-level idea is that while we do not know the precise pixel
values when they are ‘blurred’ together, we do know if all
of the pixels share the same value. For example, when all
of the pixels are black, only one location in memory will be
accessed, the location of black in the lookup table. Similarly
if all pixels are white only the location of the white color in
the lookup table will be accessed. However, when some pixels
are black and others are white, both the black and white color
in the lookup table are accessed.
Set Query. The set query method exploits this property. It
encodes unvisited links as black and visited links as white
and observes the cache. If it only observes memory accesses
to the black color in the lookup table, then it concludes that
none of the links have been visited. Detecting visited Links
As we did in Section 6.1 we construct a packet including the
preamble and a payload, this time the expanded payload will
include only one pixel of each website mapping to one access
to the filters table. We also use the same method of payload
detection in order to know the location and size of the payload
cache activity. An example of the cache activity on what we
detected as the payload part of the packet using the set query
method can be seen in Figure 12. As can be seen the activity
of one table access make the table line stay in the cache until
our Prime+Probe measurement evicts it and thus we get at
least one sample that it took longer time to retrieve.
Performance Problems. This can be extremely powerful
when we expect few URLs in a set to be visited. In the ideal
case we observe that none of the URLs have been visited
after only O(1) samples. Otherwise we observe that some of
the URLs have been visited. We determine which URLs by
splitting the set into two and sampling each, if we observe that
a subset has at least one visited URL we repeat this process
for the subset. In the event that precisely one URL has been
visited, we can perform a binary search and find which URL
is visited after O(logn) samples. However, as the number
of visited URLs increases the number of samples required
approaches O(n logn) and it can be faster to simply use the
simple method which always determines which URLs are
visited with O(n) samples.
Method Selection. We resolve this problem by dynamically
switching between the simple and the set query methods de-
pending on whether the website is in the Alexa Top 1,000. If

the website is in the top 1,000 websites, the attack assumes
there is a high probability of visiting the URL and uses the
simple method. Otherwise, the set query method is used.

0 5 10 15 20 25 30
0

200
400
600
800

1,000

Approx. Time (µs)

Pr
ob

e
Ti

m
e

(t
ic

ks
)

(a) No Visited Links

0 5 10 15 20 25 30
0

200
400
600
800

1,000

Approx. Time (µs)

Pr
ob

e
Ti

m
e

(t
ic

ks
)

(b) Some Visited Links

Figure 12: Access Patterns for the Set-Query Attack.

8.4 Experiment Description
In this section we describe the experiments we perform to
characterize the performance of our history-sniffing attack.
Fabricating History. We begin the experiment by fabricat-
ing browsing history. We first sample the Alexa Top 50,000
websites, such that popular websites are more likely to be
included in the fabricated history.3 We populate the browser
history using Selenium. Our script opens each website and
then verifies that the website was correctly loaded into the
history by reading the contents of the screen. We use this as
the ground truth when evaluating the attack.
History Sniffing. The history-sniffing attack runs over the
top 50,000 websites. As described above, we are ignoring the
top 1,000 websites and split the remaining 49,000 into 49 sets
of 1,000 URLs, queried using the set query method.

8.5 Results
In this section we investigate the effect the number of samples
has on the attack runtime and attack accuracy. We record sev-
eral samples and use majority-voting to select the result. We
vary the number of samples and measure the execution time,
the recall (proportion of websites that the attack was able to
recover from the victim history), and the precision (propor-
tion of websites the attack claimed to be in the victim history
that were actually in the victim history). In each experiment

3We include websites in the history with a probability of roughly 1
n where

n is the position of the website in the Top 50,000.

we use Selenium to fabricate a browsing history that is then
recovered by the attack. Table 3 summarizes the results. As
expected the attack accuracy and attack execution time both
increase as the number of samples increases.

Fixed Sample Count

Samples Runtime (s) Recall Precision

1 26.27 10% 3%
2 22.75 0% 0%
3 91.21 32% 26%
4 81.62 36% 9%
5 158.26 42% 42%
6 165.71 47% 26%
7 286.61 40% 60%
8 254.34 55% 47%
9 354.77 52% 59%

10 354.62 52% 56%
11 441.97 47% 57%
12 420.86 64% 65%
13 525.45 47% 80%
14 477.48 68% 73%

Table 3: Accuracy of the set query method using different
measurements counts and a majority vote. Recall is the pro-
portion of websites that the attack was able to recover from
the victim history. Precision is the proportion of websites
claimed by the attack to be in the victim history that were
actually in the victim history. The time excludes the search
for the victim eviction set.

9 Countermeasures

Total Cookie Protection. Total Cookie Protection is a new
feature that enforces protection on HTTP cookies by validat-
ing that each requested cookie was requested from the domain
that set it. Otherwise, the request is blocked. Mozilla enabled
total cookie protection worldwide for all users on 14.6.2022.
Practically, the update applies for Firefox versions starting
from Firefox 101, all versions of Firefox Nightly, and none of
the versions of Firefox ESR. Although this feature mitigates
all cross-origin pixel stealing attacks, it does not affect the
history-sniffing attack because the way links are rendered
as visited or not is independent of any cookies. Safari fea-
tures a countermeasure called Intelligent Tracking Protection
that prevents cross-origin pixel stealing attacks in a similar
manner.
Constant Time Programming. is a programming style that
aims to prevent the use of known-leaky constructs with pro-
gram secrets [9, 10, 51]. In particular, secrets cannot be used
in the condition of control flow statements, as the address
of a memory access, or as an argument for a variable time

instruction (e.g. division). These constraints have been shown
to be highly successful at preventing side-channel leakage
but often cause significant program overhead and it can often
be unclear how to adhere to such constraints in high level
languages, such as the SVG filter language. For these reasons,
we only recommend this solution to browser vendors for any
fallback filters that are executed on the CPU.
frame-ancestors. The frame-ancestors directive of the
Content-Security-Policy is a widely supported feature
that provides developers the ability to deny loading from
within an iframe to prevent malicious embedding. While
this solution does not address leakage from a webpage, it pre-
vents a malicious webpage from embedding and then leaking
content from an otherwise safe victim webpage. Considering
that this technique also protects against other attacks, such
as Click-Jacking [26, 57], we recommend this for all website
operators. For website operators that need to support embed-
ding within arbitrary webpages, consider removing sensitive
information when embedding content.

10 Limitations & Future Work

Pixel Stealing. Our attack is limited to environments in which
SVG filters are executed on the CPU rather than on the GPU.
If the user uses Firefox, then any environment is applicable. If
the user uses Chrome, then the user must have an environment
on the Software Rendering List [15]. Our attack is limited to
Intel CPUs featuring inclusive caches. In principle, the attack
could likely be extended to CPUs that feature non-inclusive
caches, for example by mounting an attack on coherence
directories [71], but we leave such extension to future work.
Text Stealing. Our attack is limited to scenarios in which the
attacker is able to guess the font used by the user. In cases
where this is not possible, for example if the user changes
the font, the user is not vulnerable. Moreover, while the tech-
nique extends to languages with very large alphabets, such
as Mandarin, in practice as the alphabet size increases the
attack becomes less practical especially compared to simply
sampling each pixel multiple times.
Cross-Origin Content. Our attack assumes that cross-origin
content does not use COOP/COEP, X-Frame-Options, or
frame-ancestors. Unfortunately, the majority of websites
still do not use these features and are therefore vulnerable
to our attack [6, 11, 18, 24, 30, 37]. In addition, we assume
that the browser does not support or does not enable Total
Cookie Protection or similar countermeasures.
Theoretical Maximum Bitrate. Our pixel stealing attack in
its maximum pixels-per-packet configuration has a theoretical
maximum throughput of 32×60 = 1920 bits per second. In
practice our attack achieves a maximum speed of 267 bits per
second, while our attack is the fastest side-channel based pixel
stealing attack it is roughly 14% of the theoretical maximum.

This is in part because the attack cannot spend all of its

time recording cache activity, it must also spend some time
analysing recorded traces to identify and extract packets. We
measure the amount of time the attack spends analysing
recorded cache traces and find that it spends roughly half
of its time analysing traces.

In principle, we could offload analysing traces to a separate
thread in order to allow the attack to record a greater portion
of cache activity. We found naive attempts at doing this simply
moved the problem from analysis to message passing over-
head between threads. We leave a more thorough investigation
of efficient methods to implement multi-threaded collection
and analysis to future work.

While this shrinks the gap between the theoretical maxi-
mum and the actual throughput by half, there is still a sig-
nificant gap remaining. We find that this is due to the attack
missing on average a quarter of the packets – after accounting
for the packets that would be missed while analysing. We be-
lieve this is due to system noise obscuring the preamble such
that it is no longer recognized by our signal processing chain.
While we could deploy a more robust signal processing chain
that features more advanced signal processing techniques, it
is unclear if the additional captured packets would outweigh
the packets lost due to the additional analysis time. We leave a
more thorough investigation of this trade off to future works.

11 Conclusions

In this work we present a cache-based pixel-stealing primitive
that targets Firefox’s SVG filtering engine. Despite several
efforts to mitigate leakage, we show that pixel stealing is not
only possible but is highly practical. To that aim, we develop
an asynchronous attack architecture where the attacker mea-
sures cache leakage in parallel to SVG filter execution. This
allows us to increase the total data rate, overcoming the pre-
vious hard limit of 60 pixels per second. It also allows the
attack to completely bypass the Cross Origin Resource Shar-
ing (CORS) policies of the browser and avoid its side-channel
countermeasures. To the best of our knowledge, our attack is
the first attack on SVG filters to leak data faster than the screen
refresh rate, and is the first side-channel attack mounted on
browsers that shows a generic method for bypassing CORS.
The move from the timing side channel to a high-resolution
cache side channel significantly expands the attack landscape
for pixel-stealing attacks in particular, and for browser-borne
privacy attacks in general. Browser vendors should ensure
their filter code is resistant to cache side-channel attacks, not
just traditional timing attacks.

Acknowledgments

This research was supported by the Air Force Office of Sci-
entific Research (AFOSR) under award number FA9550-
20-1-0425; an ARC Discovery Early Career Researcher

Award DE200101577; an ARC Discovery Project num-
ber DP210102670; CSIRO’s Data61; the Defense Ad-
vanced Research Projects Agency (DARPA) under contracts
HR00112390029 and W912CG-23-C-0022, the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972; the National Science Foundation un-
der grant CNS-1954712; and gifts by Cisco and Qualcomm.

Parts of this work were undertaken while Yuval Yarom was
affiliated with the University of Adelaide and with Data61,
CSIRO.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the U.S. Government.

References
[1] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel

Genkin, Eyal Ronen, and Yuval Yarom. Spook.js: Attacking Chrome
strict site isolation via speculative execution. In IEEE SP, pages 699–
715, 2022. doi: 10.1109/SP46214.2022.9833711.

[2] Alejandro Cabrera Aldaya and Billy Bob Brumley. HyperDegrade:
From GHz to MHz effective CPU frequencies. In USENIX Security,
pages 2801–2818, 2022. URL https://www.usenix.org/system/
files/sec22-aldaya.pdf.

[3] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop
van de Pol, and Yuval Yarom. Amplifying side channels through
performance degradation. In ACSAC, pages 422–435, 2016.
doi: 10.1145/2976749.2978353.

[4] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating
point and abnormal timing. In IEEE SP, pages 623–639, 2015.
doi: 10.1145/3243734.3243766.

[5] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian
Stefan. Towards verified, constant-time floating point operations. In
CCS, pages 1369–1382, 2018. doi: 10.1145/3243734.3243766.

[6] The HTTP Archive. The HTTP archive almanac. http://almanac.
httparchive.org/en/2022/security.

[7] Chetan Bansal, Sören Preibusch, and Natasa Milic-Frayling. Cache
timing attacks revisited: Efficient and repeatable browser history, OS
and network sniffing. In SEC, pages 97–111, 2015.

[8] L. David Baron. :visited support allows queries into global
history. https://bugzilla.mozilla.org/show_bug.cgi?id=
147777, 2002.

[9] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel
Luna, and David Pichardie. System-level non-interference for
constant-time cryptography. In CCS, pages 1267–1279, 2014.
doi: 10.1145/2660267.2660283.

[10] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert.
Software mitigations to hedge AES against cache-based software side
channel vulnerabilities. 2006. URL https://eprint.iacr.org/
2006/052.

[11] William J. Buchanan, Scott Helme, and Alan Woodward. Analysis of
the adoption of security headers in HTTP. In IET Information Security,
pages 118–126, 2018. doi: 10.1049/iet-ifs.2016.0621.

[12] Chromium Project. SVG filter timing attack. https://bugs.
chromium.org/p/chromium/issues/detail?id=251711, 2013.

[13] Chromium Project. Timing attack on denormalized floating point arith-
metic in SVG filters circumvents same-origin policy. https://bugs.
chromium.org/p/chromium/issues/detail?id=615851, 2016.

[14] Chromium Project. Cross-origin pixel reading and history sniff-
ing via SVG filter timing attack. https://bugs.chromium.org/p/
chromium/issues/detail?id=686253, 2017.

[15] Chromium Project. Software rendering list. https:
//chromium.googlesource.com/chromium/src/gpu/+/refs/
heads/main/config/software_rendering_list.json, 2023.

[16] Andrew Clover. CSS visited pages disclosure. https://seclists.
org/bugtraq/2002/Feb/271, 2002.

[17] Edward W. Felten and Michael A. Schneider. Timing attacks on web
privacy. In CCS, pages 25–32, 2000. doi: 10.1145/352600.352606.

[18] The OWASP Foundation. The OWASP secure headers project. https:
//owasp.org/www-project-secure-headers/.

[19] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermeasures
on contemporary hardware. J. Cryptogr. Eng., 8(1):1–27, 2018.
doi: 10.1007/s13389-016-0141-6.

[20] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In ACNS, pages
83–102, 2018. doi: 10.1007/978-3-319-93387-0_5.

[21] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache
template attacks: Automating attacks on inclusive last-level
caches. In USENIX Security, pages 897–912, 2015. URL
https://www.usenix.org/system/files/conference/
usenixsecurity15/sec15-paper-gruss.pdf.

[22] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in JavaScript. In DIMVA,
pages 300–321, 2016. doi: 10.1007/978-3-319-40667-1_15.

[23] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games -
bringing access-based cache attacks on AES to practice. In IEEE SP,
pages 490–505, 2011. doi: 10.1109/SP.2011.22.

[24] Scott Helme. Top 1 million analysis - june 2022. https://
scotthelme.co.uk/top-1-million-analysis-june-2022/.

[25] Anxin Huang, Chen Zhu, Dewen Wu, Yi Xie, and Xiapu Luo. An
adaptive method for cross-platform browser history sniffing. In Mea-
surements, Attacks, and Defenses for the Web Workshop, pages 1–7,
2020. doi: 10.14722/madweb.2020.23006.

[26] Lin-Shung Huang, Alexander Moshchuk, Helen J. Wang, Stu-
art Schecter, and Collin Jackson. Clickjacking: Attacks
and defenses. In USENIX Security, pages 413–428, 2012.
URL https://www.usenix.org/system/files/conference/
usenixsecurity12/sec12-final39.pdf.

[27] Artur Janc and Lukasz Olejnik. Web browser history detection as
a real-world privacy threat. In ESORICS, pages 215–231, 2010.
doi: 10.1007/978-3-642-15497-3_14.

[28] Artur Janc and Lukasz Olejnik. Feasibility and real-world implica-
tions of web browser history detection. In Web 2.0 Security and
Privacy, 2010. URL https://www.ieee-security.org/TC/W2SP/
2010/papers/p26.pdf.

[29] David A Kaplan. Optimization and amplification of cache side channel
signals. In arXiv, 2023. doi: 10.48550/arXiv.2303.00122.

[30] Georgios Karopoulos, Dimitris Geneiatakis, and Georgios Kam-
bourakis. Neither good nor bad: A large-scale empirical analysis of
HTTP security response headers. In TrustBus, pages 83–95, 2021.
doi: 10.1007/978-3-030-86586-3_6.

[31] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup,
Eyal Ronen, and Yuval Yarom. The gates of time: Improv-
ing cache attacks with transient execution. In USENIX Se-
curity, 2023. URL https://www.usenix.org/system/files/
usenixsecurity23-katzman.pdf.

[32] Hiroaki Kikuchi, Kota Sasa, and Yuta Shimizu. Interactive history
sniffing attack with Amida lottery. In IMIS, pages 599–602, 2016.
doi: 10.1109/IMIS.2016.109.

https://doi.org/10.1109/SP46214.2022.9833711
https://www.usenix.org/system/files/sec22-aldaya.pdf
https://www.usenix.org/system/files/sec22-aldaya.pdf
https://doi.org/10.1145/2976749.2978353
https://doi.org/10.1145/3243734.3243766
https://doi.org/10.1145/3243734.3243766
http://almanac.httparchive.org/en/2022/security
http://almanac.httparchive.org/en/2022/security
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://doi.org/10.1145/2660267.2660283
https://eprint.iacr.org/2006/052
https://eprint.iacr.org/2006/052
https://doi.org/10.1049/iet-ifs.2016.0621
https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=251711
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=615851
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json
https://chromium.googlesource.com/chromium/src/gpu/+/refs/heads/main/config/software_rendering_list.json
https://seclists.org/bugtraq/2002/Feb/271
https://seclists.org/bugtraq/2002/Feb/271
https://doi.org/10.1145/352600.352606
https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-secure-headers/
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/978-3-319-93387-0_5
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1109/SP.2011.22
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://scotthelme.co.uk/top-1-million-analysis-june-2022/
https://doi.org/10.14722/madweb.2020.23006
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf
https://doi.org/10.1007/978-3-642-15497-3_14
https://www.ieee-security.org/TC/W2SP/2010/papers/p26.pdf
https://www.ieee-security.org/TC/W2SP/2010/papers/p26.pdf
https://doi.org/10.48550/arXiv.2303.00122
https://doi.org/10.1007/978-3-030-86586-3_6
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://doi.org/10.1109/IMIS.2016.109

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In IEEE SP, pages 1–19, 2019.
doi: 10.1109/SP.2019.00002.

[34] David Kohlbrenner and Hovav Shacham. Trusted browsers for
uncertain times. In USENIX Security, pages 463–480, 2016.
URL https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16_paper_kohlbrenner.pdf.

[35] David Kohlbrenner and Hovav Shacham. On the effectiveness of mitiga-
tions against floating-point timing channels. In USENIX Security, pages
69–81, 2017. URL https://www.usenix.org/system/files/
conference/usenixsecurity17/sec17-kohlbrenner.pdf.

[36] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-
origin pixel stealing: timing attacks using CSS filters. In CCS, pages
1055–1062, 2013. doi: 10.1145/2508859.2516712.

[37] Arturs Lavrenovs and F. Jesus Rubio Melon. HTTP security headers
analysis of top one million websites. In CyCon, pages 345–370, 2018.
doi: 10.23919/CYCON.2018.8405025.

[38] Vladimir I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, pages 707–710,
1966.

[39] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing at-
tacks in sandboxed JavaScript. In ESORICS, pages 191–209, 2017.
doi: 10.1007/978-3-319-66399-9_11.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015. doi: 10.1109/SP.2015.43.

[41] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In CCS, pages 2109–2122, 2018.
doi: 10.1145/3243734.3243761.

[42] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering Intel last-
level cache complex addressing using performance counters. In RAID,
pages 48–65, 2015. doi: 10.1007/978-3-319-26362-5_3.

[43] MDN Contributors. The <fecomponenttransfer> svg filter prim-
itive. https://developer.mozilla.org/en-US/docs/Web/SVG/
Element/feComponentTransfer, 2022.

[44] MDN Contributors. Privacy and the :visited selector.
https://developer.mozilla.org/en-US/docs/Web/CSS/
Privacy_and_the_:visited_selector, 2022.

[45] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks.
In CHES, pages 69–90, 2017. doi: 10.1007/978-3-319-66787-4_4.

[46] Mozilla Bug Tracker. SVG filter timing attack. https://bugzilla.
mozilla.org/show_bug.cgi?id=711043, 2013.

[47] Mozilla Bug Tracker. Pixelstealing and history-stealing through
floating-point timing side channel with svg filters. https://bugzilla.
mozilla.org/show_bug.cgi?id=1336622, 2017.

[48] Mozilla Security Blog. Plugging the CSS history leak.
https://blog.mozilla.org/security/2010/03/31/plugging-
the-css-history-leak/, 2010.

[49] Keith O’Neal and Scott Yilek. Interactive history sniff-
ing with dynamically-generated QR codes and CSS dif-
ference blending. In WOOT, pages 335–341, 2022.
doi: 10.1109/SPW54247.2022.9833863.

[50] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The spy in the sandbox: Practical cache attacks
in JavaScript and their implications. In CCS, pages 1406–1418, 2015.
doi: 10.1145/2810103.2813708.

[51] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.
doi: 10.1007/11605805_1.

[52] Colin Percival. Cache missing for fun and profit. In BSDCan 2005,
2005. URL https://www.daemonology.net/papers/htt.pdf.

[53] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
Overcoming the observer effect for high-precision cache contention
attacks. In CCS, pages 2906–2920, 2021.

[54] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Ver-
bauwhede. Showtime: Amplifying arbitrary cpu timing side channels.
In AsiaCCS, 2023. doi: 10.1145/3579856.3590332.

[55] Stephen Röttger and Artur Janc. A Spectre proof-of-concept for
a Spectre-proof web. https://security.googleblog.com/2021/
03/a-spectre-proof-of-concept-for-spectre.html, 2021.

[56] Jesse Ruderman. Css on a:visited can load an image and/or reveal if
visitor been to a site. https://bugzilla.mozilla.org/show_bug.
cgi?id=57351, 2000.

[57] Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh.
Framing attacks on smart phones and dumb routers: Tap-jacking and
geo-localization attacks. In WOOT, 2010. URL https://www.usenix.
org/legacy/events/woot10/tech/full_papers/Rydstedt.pdf.

[58] Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos. Cook-
ies from the past: Timing server-side request processing code for
history sniffing. Digital Threats: Research and Practice, 1(4), 2020.
doi: 10.1145/3419473.

[59] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in JavaScript. In Financial Cryptography, pages
247–267, 2017. doi: 10.1007/978-3-319-70972-7_13.

[60] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Pra-
teek Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprint-
ing through the cache occupancy channel. In USENIX Security, pages
639–656, 2019. URL https://www.usenix.org/system/files/
sec19-shusterman.pdf.

[61] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcom-
ing browser-based side-channel defenses. In USENIX Security, pages
2863–2880, 2021. URL https://www.usenix.org/system/files/
sec21-shusterman.pdf.

[62] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown,
and Deian Stefan. Browser history re: visited. In WOOT, 2018. URL
https://www.usenix.org/system/files/conference/woot18/
woot18-paper-smith.pdf.

[63] Paul Stone. Pixel perfect timing attacks with HTML5. In Black
Hat, 2013. https://media.blackhat.com/us-13/US-13-Stone-
Pixel-Perfect-Timing-Attacks-with-HTML5-WP.pdf.

[64] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel
Genkin, and Yuval Yarom. Hot pixels: Frequency, power, and
temperature attacks on GPUs and ARM SoCs. USENIX Se-
curity, 2023. URL https://www.usenix.org/system/files/
usenixsecurity23-taneja.pdf.

[65] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A prac-
tical attack framework for precise enclave execution control. In Sys-
TEX@SOSP, pages 4:1–4:6, 2017. doi: 10.1145/3152701.3152706.

[66] Pepe Vila, Boris Köpf, and José F. Morales. Theory and prac-
tice of finding eviction sets. In IEEE SP, pages 39–54, 2019.
doi: 10.1109/SP.2019.00042.

[67] Frederick M Waltz and John WV Miller. Efficient algorithm
for Gaussian blur using finite-state machines. In Machine Vision
Systems for Inspection and Metrology VII, pages 334–341, 1998.
doi: 10.1117/12.326976.

[68] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang,
Grant Garrett-Grossman, Christopher W. Fletcher, David Kohlbrenner,
and Hovav Shacham. DVFS frequently leaks secrets: Hertzbleed attacks
beyond SIKE, cryptography, and CPU-only data. In IEEE SP, 2023.
doi: 10.1109/SP46215.2023.10179326.

https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kohlbrenner.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kohlbrenner.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-kohlbrenner.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-kohlbrenner.pdf
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.23919/CYCON.2018.8405025
https://doi.org/10.1007/978-3-319-66399-9_11
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1007/978-3-319-26362-5_3
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/feComponentTransfer
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://developer.mozilla.org/en-US/docs/Web/CSS/Privacy_and_the_:visited_selector
https://doi.org/10.1007/978-3-319-66787-4_4
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=711043
https://bugzilla.mozilla.org/show_bug.cgi?id=1336622
https://bugzilla.mozilla.org/show_bug.cgi?id=1336622
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://doi.org/10.1109/SPW54247.2022.9833863
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
https://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1145/3579856.3590332
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://bugzilla.mozilla.org/show_bug.cgi?id=57351
https://bugzilla.mozilla.org/show_bug.cgi?id=57351
https://www.usenix.org/legacy/events/woot10/tech/full_papers/Rydstedt.pdf
https://www.usenix.org/legacy/events/woot10/tech/full_papers/Rydstedt.pdf
https://doi.org/10.1145/3419473
https://doi.org/10.1007/978-3-319-70972-7_13
https://www.usenix.org/system/files/sec19-shusterman.pdf
https://www.usenix.org/system/files/sec19-shusterman.pdf
https://www.usenix.org/system/files/sec21-shusterman.pdf
https://www.usenix.org/system/files/sec21-shusterman.pdf
https://www.usenix.org/system/files/conference/woot18/woot18-paper-smith.pdf
https://www.usenix.org/system/files/conference/woot18/woot18-paper-smith.pdf
https://media.blackhat.com/us-13/US-13-Stone-Pixel-Perfect-Timing-Attacks-with-HTML5-WP.pdf
https://media.blackhat.com/us-13/US-13-Stone-Pixel-Perfect-Timing-Attacks-with-HTML5-WP.pdf
https://www.usenix.org/system/files/usenixsecurity23-taneja.pdf
https://www.usenix.org/system/files/usenixsecurity23-taneja.pdf
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1117/12.326976
https://doi.org/10.1109/SP46215.2023.10179326

[69] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher
Kruegel. A practical attack to de-anonymize social network users.
In IEEE SP, pages 223–238, 2010. doi: 10.1109/SP.2010.21.

[70] World Wide Web Consortium (W3C). Filter effects module level 1.
https://drafts.fxtf.org/filter-effects, 2019.

[71] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In IEEE SP,
pages 888–904, 2019. doi: 10.1109/SP.2019.00004.

[72] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
719–732, 2014. URL https://www.usenix.org/system/files/
conference/usenixsecurity14/sec14-paper-yarom.pdf.

A Modelling Prime+Scope False-Negatives

In this appendix we analyze Prime+Scope as a primitive to
measure cache activity in our pixel stealing attacks. We find
that Prime+Scope is significantly more sensitive to some
kinds of noise than Prime+Probe. Specifically, Prime+Scope
is sensitive to noise which causes a cache miss to be incor-
rectly classified as a cache hit. Such a situation can leave
Prime+Scope in a state where it is unable to detect cache
events until the next time the cache state is refreshed by a
prime operation.
Prime+Scope. The prime operation of Prime+Scope per-
forms two functions on a target cache set. First, similar to
Prime+Probe, it clears victim cache lines from the set. Second,
it sets a so-called scope line as the next line to be evicted from
the target set. That is, if some other line needs to be cached
in the set, then the scope line is evicted. Prime+Scope abuses
this fact to detect victim memory accesses by only measuring
access times to the scope line. If a cache hit to the scope line
is detected, then the state of the cache remains unchanged
and the attack can measure the access time to the scope line
again. On the other hand, if a cache miss is detected, then this
indicates a victim memory access. In this case, the state of the
cache has changed and another prime operation is required to
refresh the desired cache state.

However, if a cache miss is incorrectly categorized as a
cache hit, then the prime operation will not be performed
and Prime+Scope will not be able to detect any future victim
memory accesses.
Model Description. To investigate this behavior, we model
Prime+Scope as an abstract cache attack that detects cache
events without disrupting the cache state. If the attack per-
forms the prime operation, then the cache transitions to the
primed state. If a victim accesses memory, then the cache
transitions to the dirty state. The attack can only detect victim
memory accesses by detecting the transition from the primed
state to the dirty state. If the cache is in the dirty state when
a victim memory access occurs, then the attack will not be
able to detect it. After each detected victim memory access,
or after w samples, the attack performs the prime operation
setting the cache back to the primed state.

We limit ourselves to the following outcomes for each
measurement: false negative or some other outcome. We do
this so that we can model the attack using a weighted coin
with finite trials and ignoring all other outcomes has no effect
on measuring the effect of false negatives. We calculate the
probability of flipping tails, the probability of a false negative,
in the following way. Let d be the probability to incorrectly
measure a victim memory access and v be the probability
that the victim accesses memory on any given sample. The
false negative rate is then dv, the probability that both events
happen, the victim accesses memory and the attack incorrectly
measures it. In the coin flipping model dv is the probability
to flip tails.
Analytical Solution. Next we ask What is the average number
of coin flips until we flip tails? this corresponds to What is the
average number of samples until we have a false negative?.
We answer these questions using a geometric distribution
given x the number of trials and dv the probability of a false
negative we find nx the average number of coin flips (sam-
ples) until we flip tails (have a false negative). The portion of
samples that are observed on average is nx

x .

nx =
x

∑
i=1

(1−dv)i =
(dv−1)((1−dv)x −1)

dv
.

We extend this solution to attacks that prime the cache
every w samples by noting that it is possible to break any run
of s samples into ⌊ s

w⌋ identical runs of length w and one run
of length s mod w. We can calculate the average number of
samples that can be observed by substituting w and s mod w
into the equation above to yield nw and ns mod w. These values
are then combined to find ns the average number of observed
samples ns = ⌊ s

w⌋nw +ns mod w.

10−6 10−5 10−4 10−3 10−2 10−1 100

False Negative Rate

0

20

40

60

80

100

%
S

a
m

p
le

s
O

b
se

rv
ed

B
row

ser

N
ative

False Negative Rate vs Refresh Rate

w = 100

w = 102

w = 103

w = 104

Figure 13: Comparison between False Negative Rate and
Refresh Rate. Refresh Rate is defined as w the number of
samples until the state of the cache is refreshed by the attack.
False Negative Rate is defined as dv the probability that the
attack fails to detect a victim memory access. captured.

Results. Figure 13 compares the refresh rate w with the
probability of a false negative dv. The vertical lines marked
Native and Browser show measured values for d in the two
respective environments. Note that we do not know v and as

https://doi.org/10.1109/SP.2010.21
https://drafts.fxtf.org/filter-effects
https://doi.org/10.1109/SP.2019.00004
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

such these lines show the maximum expected false negative
rate for these environments.

The figure shows that a false negative rate that is 10× larger
requires a refresh interval that is 10× smaller to achieve a
similar accuracy. The opposite is also true if the false neg-
ative rate is 10× smaller than a refresh interval that is 10×
larger can achieve a similar accuracy. Importantly, this prop-
erty holds for d and v independently. If the victim accesses
memory 10× more frequently, then the refresh interval must
be 10× smaller to achieve a similar accuracy.

Finally, the figure also provides a comparison to attacks that
prime the cache for each sample (w= 1) such as Prime+Probe.
Note that in this case the probability to observe a sample is
simply the probability to not observe a false negative ie. The
portion of samples observed is 1−dv.

B GPU Filters

Table 4 provides a list of filter elements in Firefox that do not
have a GPU implementation.

Filter Element GPU Support

feBlend ✓
feColorMatrix ✓
feComponentTransfer ✓
feComposite ✓
feConvolveMatrix ✗
feDiffuseLighting ✗
feDisplacementMap ✗
feFlood ✓
feGaussianBlur ✗
feImage —
feMerge —
feMorphology ✗
feOffset ✓
feSpecularLighting ✗
feTile ✗
feTurbulence ✗

Table 4: List of filter elements. Filter elements marked ✓
have a GPU implementation and elements marked ✗ do not.
feImage and feMerge use a separate system that is out of
scope for this work and are marked —.

	Introduction
	Our Contribution

	Background
	Cache Attacks
	Pixel Stealing
	History Sniffing.
	Cross-Origin Isolation

	Attack Model
	Overcoming Cross-Origin Isolation
	Leaking Pixels
	The feComponentTransfer Filter
	Executing feComponentTransfer on the CPU

	Recovering Pixels
	Detecting Transmitter Communications
	Evaluation
	Varying Payload Size
	Finding the Target Set
	System Noise

	Comparisons to Existing Works

	From Pixel Stealing to Text Stealing
	Text Stealing Results

	History Sniffing
	Straightforward History Sniffing
	Overview
	Set Query
	Experiment Description
	Results

	Countermeasures
	Limitations & Future Work
	Conclusions
	Modelling Prime+Scope False-Negatives
	GPU Filters

