Abstract

Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network.

In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites.

We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser.

1 Introduction

Over the last decades the World Wide Web has grown from an academic exercise to a communication tool that encompasses all aspects of modern life. Users use the web to acquire information, manage their finances, conduct their social life, and more. This shift to the so called virtual life has resulted in new challenges to users’ privacy. Monitoring the online behavior of users may reveal personal or sensitive information about the users, including information such as sexual orientation or political beliefs and affiliations.

Several tools have been developed to protect the online privacy of users and hide information about the websites they visit [18, 20, 71]. Prime amongst these is the Tor network [20], an overlay network of collaborating servers, called relays, that anonymously forward Internet traffic between users and web servers. Tor encrypts the network traffic of all of the users, and transmits it between relays in a way that prevents external observers from identifying the traffic of specific users. In addition to the network itself, the Tor Project also provides the Tor Browser [82], a modified version of the Mozilla Firefox web browser, that further protects users by disabling features that may allow websites to track the users.

Past research has demonstrated that encrypting traffic is not sufficient for protecting the privacy of the users [10, 29, 35, 36, 37, 45, 46, 53, 60, 66, 67, 73, 88, 89, 93]. Observable patterns in the metadata of encrypted traffic, specifically, the size of the transmitted data, its direction, and its timing, may reveal the web page that the user is visiting. Applying such website fingerprinting techniques to Tor traffic results in a
success rate of over 90% in identifying the websites that a user visits over Tor \cite{73}.\footnote{Website fingerprinting is a misnomer. Fingerprinting identifies individual web pages rather than sites. Following this misnomer, in this work we use the term website to refer to specific pages, typically the homepage of the site.}

In this paper, we focus on an alternative attack model of exploiting micro-architectural side-channels, a less explored option for website fingerprinting. The attack model assumes a victim that visits a web site under the attacker’s control. The web site monitors the state of the victim computer’s cache, and uses that information to infer the victim’s web activity in other tabs of the same browser, or even in other browsers.

Because the attack observes the internal state of the target PC, rather than the network traffic. It offers the potential of overcoming traffic shaping, often proposed as a defense for website fingerprinting \cite{11, 12, 15, 63, 90}. Similarly, the attack may be applicable in scenarios where network-based fingerprinting is known to be less effective, such as when the browser caches the contents of the website \cite{36}.

We note that the malicious web site does not need to be fully under the control of the attacker. The attacker only needs to be able to inject JavaScript code via the web site to the victim’s browser. This can be done, for example, through a malicious advertisement or pop-up window. Alternatively, documents released by former NSA contractor Edward Snowden indicate that some nation-state agencies have the operational capability to exploit this vector on a wide scale. In March 2013 the German magazine Der Spiegel reported on the existence of a tool called QUANTUMINSERT, which the GCHQ and the NSA could use to inject malicious code to any website \cite{78}. The Der Spiegel claims that the GCHQ successfully used this tool to attack the computers of employees at the partly-government-held Belgian telecommunications company Belgaom, and that the NSA used the same technology to target high-ranking members of the Organization of the Petroleum Exporting Countries (OPEC) at the organization’s Vienna headquarters. Finally, malicious advertisements are a viable option for injecting cache side-channel attacks to browsers \cite{28}.

For a small number of websites, under the closed-world model, Oren et al. \cite{64} show the possibility of fingerprinting via malicious JavaScript code. However, beyond showing the ability to distinguish between a handful of websites, their work does not provide an analysis of the effectiveness of the technique. Furthermore, following the disclosure of the Spectre and the Meltdown attacks, which can also be potentially delivered via malicious JavaScript injection \cite{48, 57}, major vendors deployed defenses against browser-borne side-channel attacks. In particular, all modern browsers have reduced the resolution of the JavaScript time function, \texttt{performance.now()}, by several orders of magnitude \cite{69, 87}, making it difficult to tell apart cache hits and cache misses. Traditionally, cache attacks require high-resolution timers, and while mechanisms to generate such timers in web browsers have been published \cite{31, 49, 76}, it is not clear that these can be used for website fingerprinting.

Thus, in this paper we ask: Are cache-based attacks a viable option for website fingerprinting?

Our Contribution

We answer this question in the affirmative. We design and implement a cache-based website fingerprinting attack, and evaluate it in both the closed-world and the open-world models. We show that in both models our JavaScript-based attacker achieves high fingerprinting accuracy even when executed on modern mainstream browsers that include all recently introduced countermeasures for side-channel (Spectre) attacks. Even when taking these countermeasures to the extreme, as is done in the Tor Browser, our attack remains effective, although with a drop in accuracy.

Our attack consists of collecting traces of cache occupancy while the browser downloads and renders web sites. Adapting the techniques of Rimmer et al. \cite{73}, we use deep neural networks to analyze and to classify the collected traces. By focusing on cache occupancy rather than on activity within specific cache sets, our attack avoids the need for high resolution timers required by prior cache-based attacks. Furthermore, because our technique does not depend on the layout of the cache, it can overcome proposed countermeasures that randomize the cache layout \cite{58, 70, 91}.

We investigate the source of the information in the cache occupancy traces and show that they contain information from both the networking activity and the rendering activity of the browser. Using information from the rendering activity allows our attack to remain effective even in scenarios that thwart network-based fingerprinting, such as when the browser retrieves data from its response cache and not from the network, or when the network traffic is shaped.

Finally, we investigate a potential countermeasure that introduces a high level of activity into the last level cache. We show that the countermeasure reduces the success rate of the attack. In particular, the noise completely masks the activity of the Tor Browser, reducing the attack accuracy to that of a random guess. This countermeasure results in a mean slowdown of 5\% for CPU benchmarks, which we consider reasonable when visiting privacy-sensitive web sites.

More specifically, we make the following contributions:

- We design and implement the cache occupancy side-channel attack, a cache-based side channel attack technique which can operate with the low timer resolution supported in modern JavaScript engines. Our attacks only require a sampling rate six orders of magnitude lower than required for the prior attacks of Oren et al. \cite{64} (Section 4).
The main aim of Tor is thus to protect the identity of the communicating parties. Tor achieves this protection by forwarding the users’ communication through a circuit consisting of a few (typically three) Tor relays. The user encrypts the network traffic with multiple layers of encryption, and each relay in the circuit decrypts a successive layer to find out where to forward the traffic. See Dingledine et al. [20] for further information.

2.2 Website Fingerprinting Attacks and Defences

In the conventional attack model of a network-level attacker, much previous work has demonstrated the ability of an adversary to make probabilistic inferences about users’ communications via statistical analysis, even if these communications are in their encrypted form. These works have investigated both the selection of features (such as packet sizes, packet timings, direction of communication), as well as the design of classifiers (such as support vector machines, random forests, Naive Bayes) to make accurate predictions [10, 29, 35, 36, 37, 45, 46, 53, 60, 66, 67, 73, 88, 89, 93]. In response, several defense mechanisms have been proposed in the literature [11, 12, 15, 63, 90]. The common idea behind these defenses is to inject random delays and spurious cover traffic to perturb the traffic features and therefore obfuscate users’ communications. A common point of all of these defenses is a typical trade-off between latency/bandwidth and privacy, and thus they face deployment hurdles. Rimmer et al. [73] have recently proposed a family of classifiers based on deep learning algorithms such as SDAE, CNN and LSTM, which operate on the raw network traces and are therefore less sensitive to ad-hoc defenses against particular traffic features.

2.3 Cache Side-Channel Attacks

When programs execute on a processor, they share the use of micro-architectural components such as the cache. This sharing may result in unintended communication channels, often called side channels, between programs [27, 39], which may be used to leak secret information. In particular, cache-based attacks, which exploit contention on one of the processor’s caches, can leak secrets such as cryptographic keys [4, 26, 65, 68, 83], keystrokes [32], address layout [23, 31, 33], etc.

Cache Operation. Caches bridge the speed gap between the faster processor and the slower memory. The cache is a small bank of memory, which stores the contents of recently accessed memory locations. Most caches in modern processors are set associative. The cache is divided into partitions called sets. Each memory location maps to a single set and can only be cached in the set it maps to. When the processor needs to access a specific memory location, it successively searches in a hierarchy of caches. In a cache hit, when the contents of the required address is found in the cache, access is performed on the cached contents. Otherwise, in a cache hit.

- We evaluate the use of two machine learning techniques, CNN and LSTM, for fingerprinting websites based on the cache activity traces collected while loaded by the browsers (Section 5).
- We show that cache-based fingerprinting has high accuracy in both the closed- and the open-world models, under a variety of operating systems and browsers (Section 6).
- We evaluate both fingerprinting methods without deleting the browser response cache, and show that while the accuracy of network-based fingerprinting drops significantly, the accuracy of cache-based fingerprinting is not affected (Section 7.3).
- We show that cache-based fingerprints contain information both from the network activity and from the rendering activity of the target device. Therefore, cache-based fingerprinting maintains a high accuracy even in the presence of traffic molding countermeasures which force a constant bit rate on network traffic (Section 7.4).
- We design and evaluate a countermeasure that introduces noise in the cache. The countermeasure is applicable from both native code and from JavaScript, completely blocks the attack on the Tor Browser, and only causes a small performance degradation on CPU-bound workloads (Section 9).

2 Background

2.1 Tor

Tor [20], is a collection of collaborating servers called relays, designed to provide privacy for network communication. Tor aims to protect users from on-path adversaries that can observe the network traffic. In this scenario, a user uses a PC to browse the web, and an adversary positioned between the user’s PC and the destination web server captures the information that the user exchanges with the web server.

A common protection for such an attack model is to use encryption, e.g., using protocols such as TLS [19] which underlies the security of the HTTPS scheme [72]. However, this solution only protects the contents of the communication, leaving the identity of the communicating parties exposed to the adversary. Knowing that users merely connected to a certain sensitive website may be enough to incriminate them, even if the actual data exchanged over the secure connection is not known. This risk became a reality in 2016, as tens of thousands of individuals were persecuted by the Turkish government for accessing the domain bylock.net [50].

The main aim of Tor is thus to protect the identity of the communicating parties. Tor achieves this protection by forwarding the users’ communication through a circuit consisting of a few (typically three) Tor relays. The user encrypts the network traffic with multiple layers of encryption, and each relay in the circuit decrypts a successive layer to find out where to forward the traffic. See Dingledine et al. [20] for further information.

- We show that cache-based fingerprinting has high accuracy in both the closed- and the open-world models, under a variety of operating systems and browsers (Section 6).
- We evaluate both fingerprinting methods without deleting the browser response cache, and show that while the accuracy of network-based fingerprinting drops significantly, the accuracy of cache-based fingerprinting is not affected (Section 7.3).
- We show that cache-based fingerprints contain information both from the network activity and from the rendering activity of the target device. Therefore, cache-based fingerprinting maintains a high accuracy even in the presence of traffic molding countermeasures which force a constant bit rate on network traffic (Section 7.4).
- We design and evaluate a countermeasure that introduces noise in the cache. The countermeasure is applicable from both native code and from JavaScript, completely blocks the attack on the Tor Browser, and only causes a small performance degradation on CPU-bound workloads (Section 9).
miss, the process repeats on the next cache level. A miss on the last-level cache (LLC) results in a time-consuming access to the RAM.

The Prime+Probe Technique. Past cache-based attacks from web browsers [28, 64] employ the Prime+Probe technique [65, 68], which exploits the set-associative structure. Each round of attack consists of three steps. In the first step, the cache is primed, i.e., the attacker completely fills some of the cache sets with its own data. The attacker then waits some time to allow the victim to execute. Finally, the attacker probes the cache by measuring the time it takes to access the previously-cached data in each of the sets. If the victim accesses memory locations that map to a monitored cache set, the victim’s memory contents will replace the attacker contents in the cache. Hence, the attacker will need to retrieve the data from lower levels in the hierarchy, increasing the access time to its data. Prime+Probe has been used for attacks on data [65, 68] and instruction [3, 4] caches, as well as for attacks on the LLC [43, 59]. It has been shown practical in multiple settings, including across different virtual machines in cloud environments [40] and from mobile code [28, 64].

Countermeasures in JavaScript. The time difference between the latencies of a memory access and cache access is on the order of 0.1 μs. To distinguish between cache hits and misses, cache attacks typically require a high resolution timer. Following the publication of the first demonstration of a cache attack in JavaScript [64], some browsers started reducing the resolution of the timers they provide as a countermeasure for cache side-channel attacks. This approach had become wide-spread after the disclosure of the Spectre attack [48], and now all mainstream browsers incorporate this countermeasure. Furthermore, while non-traditional timers in browsers have been identified [25, 49, 76], browsers and extensions have since disabled many of the features that allow sub-microsecond resolution [61, 69, 77]. An extreme case of this behavior can be found in the Tor Browser, which restricts the timer resolution to 100 ms, or 10 Hz.

Several of the previously discovered timers rely on browser features that are accessible from JavaScript. These are not accessible in environments such as Cloudflare Workers [7], which rely on the absence of high-resolution timers to protect against timing attacks [85].

2.4 Related Work

Several past works have looked at the possibility of performing website fingerprinting based on local side-channel information. In all of these works, which we survey in Table 1, the adversary observes some property of the system while the victim browser is rendering a webpage. The adversary then applies a machine learning classifier to the observed side-channel trace to identify the rendered website.² Some of these works assume that the adversary has malicious control over a hardware component or peripheral [16, 56, 94]. Others assume that the adversary can execute arbitrary native code on the target hardware [34, 44, 51, 80]. Yet others make the much more modest assumption that the adversary can induce the victim to render a webpage containing malicious JavaScript code [8, 47, 64, 86]. We mainly investigate the last model.

Kim et al. [47] abuse a data leak in the Chrome implementation of the Quota Management API, which has been since fixed. Our attack, in contrast, is based on a fundamental property of the CPU running the browser application, which is far less trivial to fix. (See Section 9.) Moreover, the mitigations put in place as part of the response to the Spectre and Meltdown disclosures make the high sampling rates exploited thus far [64, 86] unattainable in modern secure browsers. Our attack, in contrast, achieves high accuracy at drastically lower sampling rates and is capable of classifying a significant number of websites at sampling rates as low as 10 Hz. To the best of our knowledge, no cache attack that uses such low clock resolutions has been demonstrated.

In addition, Oren et al. [64] only recorded a small number of traces from a few popular websites, and did not investigate the effectiveness of cache-based fingerprinting in open-world contexts, or in scenarios where various anti-fingerprinting measures are in place. We address all of these shortcomings in this work. Furthermore, while Oren et al. [64] do target the Tor Browser, the attack code executes in a different mainstream browser. Unlike our work, they do not demonstrate an attack from JavaScript code running within the Tor Browser.

Booth [8] is able to classify a moderate amount of websites using a non-cache-based method with a millisecond clock. Their attack, however, saturates all of the victim’s CPU cores with math-intensive worker threads, making it highly noticeable and easy to detect by the victim.

Cock et al. [17] implement a covert channel using an L1 cache occupancy channel. Ristenpart et al. [74] show that a cache occupancy channel can detect keystroke timing and network load in co-located virtual machines on cloud servers. Both use the technique with high resolution (sub nanosecond) timers. We are not aware of any prior use of the cache occupancy channel to overcome low resolution timers.

3 The Website Fingerprinting Attack Model

The classical attack model used to evaluate website fingerprinting attacks is presented in Figure 1. In this model, a targeted user uses a web browser to display a sensitive website. To protect their privacy, the user does not connect to the website directly, but instead uses a secure network, such as the Tor network, for the connection. The attacker is typ-

² A different but closely related class of attacks are “history sniffing” attacks, such as [54, 92], in which the attacker wishes to learn which websites the victim has visited in the past.
Table 1: Related work on website fingerprinting based on local side channels.

<table>
<thead>
<tr>
<th>Work</th>
<th>Target</th>
<th>Side Channel</th>
<th>Attack Model</th>
<th>Sampling rate [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark et al., 2013 [16]</td>
<td>Chrome (Mac, Win, Linux)</td>
<td>Power consumption</td>
<td>Hardware</td>
<td>250000</td>
</tr>
<tr>
<td>Yang et al., 2017 [94]</td>
<td>Multiple smartphones</td>
<td>Power consumption</td>
<td>Hardware</td>
<td>200000</td>
</tr>
<tr>
<td>Lifshits et al., 2018 [56]</td>
<td>Android Browser, Chrome Android</td>
<td>Power consumption</td>
<td>Hardware</td>
<td>1000</td>
</tr>
<tr>
<td>Jana and Shmatikov, 2012 [44]</td>
<td>Chrome Linux, Firefox Linux, Android</td>
<td>App memory footprint</td>
<td>Native code</td>
<td>100000</td>
</tr>
<tr>
<td>Lee et al., 2014 [51]</td>
<td>Chromium Linux, Firefox Linux</td>
<td>GPU memory leaks</td>
<td>Native code</td>
<td>N/A</td>
</tr>
<tr>
<td>Spreitzer et al., 2016 [80]</td>
<td>Chrome Android, Android Browser, Tor Android</td>
<td>Data-Usage Statistics</td>
<td>Native code</td>
<td>20–50</td>
</tr>
<tr>
<td>Gülmezoglu et al., 2017 [34]</td>
<td>Chrome Linux (Intel and ARM), Tor Linux</td>
<td>Performance counters</td>
<td>Native code</td>
<td>10000</td>
</tr>
<tr>
<td>Oren et al, 2015 [64]</td>
<td>Safari MacOS, Tor MacOS</td>
<td>Last-level cache</td>
<td>JavaScript</td>
<td>10^8</td>
</tr>
<tr>
<td>Booth, 2015 [8]</td>
<td>Chrome (Mac, Win, Linux), Firefox Linux</td>
<td>CPU activity</td>
<td>JavaScript</td>
<td>1000</td>
</tr>
<tr>
<td>Kim et al., 2016 [47]</td>
<td>Chromium Linux, Chrome (Win, Android)</td>
<td>Quota Management API</td>
<td>JavaScript</td>
<td>N/A</td>
</tr>
<tr>
<td>Vila and Köpf, 2017 [86]</td>
<td>Chromium Linux, Chrome Mac</td>
<td>Shared event loop</td>
<td>JavaScript</td>
<td>40000</td>
</tr>
<tr>
<td>This work</td>
<td>Chrome (Win, Linux), Firefox (Win, Linux), Safari MacOS, Tor Linux</td>
<td>Last-level cache</td>
<td>JavaScript</td>
<td>10–500</td>
</tr>
</tbody>
</table>

Figure 1: The classical website fingerprinting attack model. The (passive) adversary monitors the traffic between the target user and the secure network.

Gong et al. [29] suggest a variation on this scheme, in which the attacker remotely probes routers to estimate the load of the network traffic they process and performs the statistical analysis based on this estimated traffic. Jansen et al. [45] suggest another variation in which the attacker monitors the traffic inside the Tor network, rather than monitoring traffic at the network’s edge.

Figure 2: Remote cache-based website fingerprinting attack model. The remote attacker injects malicious JavaScript code into a browser running on the target machine.

In this work we discuss a different attack model, presented in **Figure 2**. In this model, the target user has two concurrent browsing sessions. In one session, the user browses to...
an adversary-controlled site, which contains some malicious JavaScript code. In the other session, the user browses to some sensitive web site. Due to architectural boundaries, such as sandboxing or process isolation, the malicious code cannot directly observe the internal state of the sensitive session. Hence, the adversary cannot directly determine the ultimate destination of any communication issued from the sensitive session, even when the sensitive session is using a direct unencrypted connection to the remote server. The malicious code can, however, observe the micro-architectural state of the processor, and use this information to spy on the sensitive session.

Our attack can therefore be considered in the following scenarios:

• A cross-tab scenario, where a user is made to visit an attacker-controlled website containing malicious JavaScript, and this website tries to learn what other sensitive sites the user is visiting at the same time. These attacker-controlled and sensitive browsing sessions can be carried out on the same browser, on two different browsers belonging to the same user, or even on two browsers residing in two completely isolated virtual machines which share the same underlying hardware [75].

One possible way of causing the user to browse to such an attacker-controlled site is through a phishing attack, where the attacker sends fraudulent messages, purporting to be from a benign source, that induces the victim to click on a link to a malicious web site. Alternatively, the attacker may pay an advertisement service to display a (malicious) advertisement when the user visits a third-party website [28].

• A cross-network scenario, where the attacker is an active on-path adversary capable of injecting JavaScript into any non-encrypted page. The attacker would like to leverage that access to try to learn about the user’s sensitive activity, even though the attacker cannot manipulate or access this traffic directly. For example, the user may simultaneously run one browsing session over an unsecured connection for mundane tasks, and another browsing session over a second, secured connection for sensitive tasks. An attacker capable of modifying traffic on the standard link can learn about activity carried out over the secure link, whether this secure connection made through a VPN, through the Tor network, or even through a separate network adapter which the attacker cannot see.

The main challenge of our attack model is the extremely restricted JavaScript runtime, which requires the attacker code to be written in a particular way, as we describe further in Section 4.

Regardless of the delivery vector, cache-based fingerprinting has a strong potential advantage over network-based fingerprinting, since it can indirectly observe both the computer’s network activity and the browser’s rendering process. As we demonstrate in Section 7.4, both of these elements contribute to the accuracy of our classifier.

4 Data Collection

4.1 Creating memorygrams

The raw data trace for network-based attacks takes the form of a network trace, commonly in the pcap file format, which contains a timestamped sequence of all traffic observed on a certain network link. The corresponding data trace in the case of cache attacks is the memorygram [64]—a trace of the cache access latency measured at a constant sampling rate over a given time period. The memorygrams of Oren et al. [64] describe the latency of multiple individual sets or groups of sets at each point in time, resulting in a two-dimensional array. In contrast, in this work we use a simplified, one-dimensional memorygram form. The contents of each entry in our memorygrams is a proxy for the occupancy of the cache at the specific time period. We collect memorygrams while the browser loads and displays websites, and use the data as fingerprints for website classification.

The Cache Occupancy Channel. Unlike prior works [28, 64], which use the Prime+Probe side-channel attack from JavaScript, we use a cache occupancy channel. The main difference is that the Prime+Probe attack measures contentions in specific cache sets, whereas our attack measures contention over the whole cache. Specifically, our JavaScript attack allocates an LLC-sized buffer and measures the time to access the entire buffer. The victim’s access to memory evicts the contents of our buffer from the cache, introducing delays for our access. Thus, the time to access our buffer is roughly proportional to the number of cache lines that the victim uses. Cache occupancy has previously been implemented in native code and used for covert channels and for measuring co-resident activity [17, 74]. Both of these implementations rely on high resolution timers. To our knowledge, we are the first to use the cache occupancy channel with a low resolution timer.

Overcoming Hardware Prefetchers. Ideally, we would like to collect information across the whole cache. Intel processors, however, try to optimize memory accesses by prefetching memory locations that the processor predicts will be accessed in the future. Because prefetching changes the cache state, we need to fool the prefetchers. To fool the spatial prefetcher [42], we use the technique of Yarom and Benger [96] and do not probe adjacent cache sets. To fool the streaming prefetcher, which tries to identify sequences of cache accesses, we use a common approach of masking access patterns by randomizing the order of the memory accesses we perform [59, 65].
Spatial Information. Compared with the Prime+Probe attack, the cache occupancy channel does not provide any spatial information. That is, the adversary does not learn any information on the addresses that the victim accesses. While this is a clear disadvantage of the cache occupancy channel, our attack does not require spatial information. The main reason is that modern browsers have complex memory allocation patterns. Consequently, the location that data is allocated changes each time a page is downloaded, and the location carries little information on the downloaded page. In practice, not having spatial information is also an advantage. Without it, there is no need to build eviction sets for cache sets, a process that can take significant time [28].

Website Memorygrams. We capture memorygrams when the browser navigates to websites and displays them. We use a JavaScript-based memorygrammer to probe the cache at a fixed rate of one sample every 2 ms. We continue the probe for 30 seconds, resulting in a vector of length 15,000. When a probe takes longer than 2 ms, we miss the slot of the next probe. We use a special value to indicate this case. We use this collection method for all mainstream browsers other than the Tor Browser.

When the attack code is launched from within the Tor Browser, where the timer resolution is limited to 100 ms, we do not measure how long a sweep over the cache takes, but instead count how many sweeps over the entire cache fit into a single 100 ms timeslot. In addition, we do not probe for 30 seconds in this setting, but rather for 50 seconds, to account for the slower response time over the Tor network. Hence, Tor memorygrams contain 500 measurements over the entire 50 second measurement time period.

The native code memorygrammer used for the evaluations in Section 7 does not suffer from a reduced timing resolution when measuring the Tor Browser. Therefore, on mainstream browsers it runs for 30 seconds and produces 15,000 entries, and on the Tor Browser it runs for 50 seconds and produces 25,000 entries.

Sanity Check. Before proceeding, we want to verify that memorygrams can be used for fingerprinting. Indeed, Figure 3 shows graphical representations of memorygrams of three sites: Wikipedia (https://www.wikipedia.com), Github (https://www.github.com), and Oracle (https://www.oracle.com), collected through the native code memorygrammer. Each memorygram is displayed as a colored strip, where time goes from left to right and the shade corresponds to cache activity at each time. (Lighter shades correspond to fewer evictions.) We see that the three memorygrams of each site, while not identical, are similar to each other. The memorygrams of different websites are, however, very different from each other. This indicates that memorygrams may be used for identifying websites.

4.2 Datasets

Closed World Datasets. We evaluate our cache-based fingerprinting on six different combinations of browsers and operating systems, summarized in Table 2. Many early works on website fingerprinting operated under a closed world assumption, where the attacker's aim is to distinguish among accesses to a relatively small list of websites. Our closed world datasets follow this line of work. These datasets consist of 100 traces each for a set of 100 websites, to a total of 10,000 memorygrams. We use the same list of 100 websites that Rimmer et al. [73] selected from the top Alexa sites. (See Appendix B for a complete list of websites included.) Similar to previous works, no traffic molding is applied and only one tab is opened at a time. The browser’s response cache, however, is not cleared before accessing each website, an aspect of the experiment we analyze in more detail in Section 7.

Open World Datasets. One common criticism of the closed world assumption is that it requires the attacker to know the complete set of websites the victim is planning to visit, allowing the attacker to prepare and train classifiers for each of these websites. This assumption was challenged by many authors, for example Juarez et al. [46]. To address this criticism, website fingerprinting methods are often evaluated in an open-world setting. In this setting, the attacker wishes to monitor access to a set of sensitive websites, and is expected to classify them with high accuracy. Additionally, there is a large set of non-sensitive web pages, all of which the attacker is expected to generally label as “non-sensitive”.

To evaluate our fingerprinting method in the open-world settings, we augment the closed-world datasets with additional 5,000 traces, each collected for a single unique web-
site, again using the list of websites provided by Rimmer et al. [73]. The base rate for this setting is 33.3%, since a trivial classifier can simply decide that all pages are non-sensitive.

5 Machine Learning

5.1 Problem Formulation

Website fingerprinting is generally formulated as a supervised learning problem, consisting of a template building step and an attack step. In the template building step, the adversary visits each target website multiple times and collects a set of labeled traces (either network traces or memorygrams), each corresponding to a visit to a certain website. Next, the adversary trains a classifier algorithm on these labeled traces, using either classical machine learning methods or deep learning methods.

In the attack step, the adversary is presented with a set of unlabeled traces, each one corresponding to a visit to an unknown website. The adversary then applies the previously trained classifier to each of these traces and outputs a guess for each trace. The accuracy of the classifier is finally calculated as the percentage of the correctly assigned labels.

5.2 Deep Learning Models

Early works on website fingerprinting, starting from Cheng and Avnur [14], used classical machine learning methods such as Naive Bayes, Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN). As a prerequisite step to running these classical machine learning methods, the adversary needs to apply an additional feature extraction step which transforms the raw trace into a more succinct representation. Since these features were chosen through human insight into the nature of network traffic, there was no immediate way of directly applying them to memorygram analysis.

Abe and Goto [2] and later Rimmer et al. [73] suggest using deep learning for website fingerprinting. Deep learning performs automatic feature learning from the raw data, reducing the reliance on human insight at the cost of a larger required training set. Rimmer et al. [73] show that, given a large enough training set, deep-learning website-fingerprinting approaches are as effective as earlier methods which require manual feature selection. An advantage of this approach is that it allows us to compare network-based and cache-based fingerprinting based on the merit of the raw data, rather than on the specific choice of features.

Deep Neural Network Configuration. A deep neural network (DNN) is typically configured as a sequence of non-linear layers which transform the raw data, first extracting salient features and then selecting the appropriate ones [30]. Every layer in a DNN consists of a set of artificial neurons, each connected to a set of outputs from the previous layers. At the forward propagation stage, the activation function is applied to the product of the each neuron’s input and its weight value, and then forwarded to the next layer.

For the last layer in the DNNs we evaluate we use a softmax layer, which outputs a vector containing a-posteriori probabilities for each one of the classes.

The process of training the neural network uses back-propagation to update the weights of each neuron to achieve a minimum loss at the output. First, the model calculates the cost between the true classification of the measurement and the predicted value using a loss function. Next, the model updates the weights of the each neuron based on the calculated loss. Every round of forward propagation and back-propagation is called an epoch. A neural network model runs multiple epochs to learn the weights for accurate classification.

We evaluate deep learning using two classifier models, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks [38]. A CNN uses a sequence of feature mapping layers alternating between convolutions and max-pooling. Each of the layers sub-samples the previous layer, iteratively reducing the size of the input to a more succinct representation, while preserving the information they encode. Each convolutional layer is a neural network specialised for detecting complex patterns in its input. The convolution layer applies several filters to the input vector, each of which is designed to identify an abstract pattern in a sequence of input elements it is provided with. The max-pooling layers reduce the dimensionality of the data by subsampling the filters, choosing the maximum value from adjacent groups of neurons applied by the filters. This alternating sequence of layers extracts complicated features from the input and produces vectors short enough for the classifiers. The feature mapping layers are followed by a dense layer, in which every neuron is connected to every output of the feature extraction phase. The LSTM-based network has an initial feature selection step similar to the CNN, but then adds an additional layer in which each neuron has a memory cell, with the output of this neuron determined both by its inputs and by the value of this memory cell. This allows the classifier to identify patterns in time-based data.

Hyperparameter Selection. Hyperparameters describe the overall structure of the DNN and of each layer. The choice of hyperparameters depends on the specific classification problem. For network-based fingerprinting, we replicated the parameters specified in the dataset provided by Rimmer et al. [73]. For cache-based fingerprinting, we manually evaluated several choices for each hyperparameter.

To prevent overfitting, we use 10-fold cross validation. We split each dataset consisting of traces into 10 folds of equal size, and select one fold, consisting of 10% of the traces, as a test set. The remaining 90% of the traces are used for training the classifier, with 81% serving as the training set and 9% as the validation set. The model trains on the training set and the evaluation is done on the test set. The number of
epochs is regulated with an Early-Stop function which stops the epochs when the accuracy of the validation set no longer increases over successive iterations. The selected hyperparameters are summarized in Appendix A.

For the CNN classifier we use three pairs of convolution and max pooling layers. For the LSTM classifier we use two. As discussed above, the traces captured by the code running within the Tor Browser contain only 500 measurements, due to the reduced timer resolution. For these shorter traces, we modified the architecture of our LSTM-based classifier. The feature selection of this classifier contains only one convolution layer. We therefore used a pool-size of three for the max-pooling layer to limit the feature reduction before the LSTM layer. In addition, because of the small amount of features, we could increase the number of LSTM units to 128 and learn more complex patterns from the features.

6 Results

All of the results in this section were obtained by using keras version 2.1.4, with TensorFlow version 1.7 as the back end, running on two Ubuntu Linux 16.04 servers, one with two Xeon E5-2660 v4 processors and 128 GB of RAM, and one with two Xeon E5-2620 v3 processors and 128 GB of RAM. Our machine learning instances took approximately 40 minutes to run in this configuration.

Table 2 presents the fingerprinting accuracy we obtain. Recall that in this scenario the JavaScript interpreter of the targeted browser executes the memorygrammer. Considering that all modern browsers reduced their timer resolution and some added jitter as a countermeasure for the Spectre attack [69, 87], the first question we need to address is whether it is even possible to implement cache-based fingerprinting attacks in such an environment.

To answer this question, we measured the latencies of the cache occupancy channel using a high-resolution timer while the browser was downloading a web page. Figure 4 shows the distribution of these latencies. The figure also uses vertical lines to indicate the timer resolutions of the various browsers. (See Table 2.) As we can see, even at the 2 ms resolution of the Firefox 59 timer, it is possible to distinguish between 80% of the probes which take less than 2 ms and the remaining 20%. This is a welcome side-effect of the use of a large buffer which is accessed at every probing step. None of the cache probes we measured, however, took longer than the 100 ms clock period of the Tor Browser. Hence, when running within the Tor Browser, we count the number of probes we can perform within each clock tick. (See Section 4.)

The next question is whether the information we collect with this low resolution is sufficient for fingerprinting. Indeed, Table 2 shows that in all of the environments we test our classifier is significantly better than a random guess. Remarkably, as our results show, even the highly restricted Tor Browser can be used for mounting cache attacks, albeit with a significantly lower accuracy than that of general-purpose browsers.

6.1 Closed World Results

We first look at the typical closed-world scenario investigated by past works. In mainstream browsers, our JavaScript attack code is consistently able to provide classification accuracies of 70–90%, well over the base rate of 1%. The Tor Browser attack, however, achieves a lower accuracy of 47%. If we, however, look not only at the top result output by the classifier, but also check whether the correct website is one of the top 5 detected websites, the accuracy of the Tor Browser attack climbs to 72%, with a base rate of 5%. This method of looking at the few most probable outputs of a classifier was previously used in similar classification problems [13, 62]. With some a-priori information an attacker can deduce which of the top 5 pages the victim has accessed.

We can compare the accuracy of our cache-based fingerprinting to the one obtained by state-of-the-art network-based methods, as reported by Rimmer et al. [73]. We see that while there are differences between the classification accuracy achieved in each case, the overall accuracy is comparable, assuming both attacks capture the same amount of traces per website. As in the network-based setting, we believe that capturing more than 100 traces per website is likely to increase the accuracy and the stability of our classifier.

6.2 Open World Results

We next turn to the more challenging open-world scenario, in which the 100 sensitive webpages must be distinguished from an additional set of 5,000 non-sensitive pages. As seen in Table 2 the JavaScript-based website fingerprinting code performs well under this scenario as well, again achieving classification accuracy of 70–90%. We note that in most cases the results are slightly better than the closed-world results. The reason is the larger size of the “non-sensitive”

Table 2: Accuracy obtained by in-browser memorygrammer—Mean (percents) and standard deviation.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>CPU</th>
<th>LLC Size</th>
<th>Browser</th>
<th>Timer Resolution</th>
<th>Closed World CNN ±</th>
<th>Open World CNN ±</th>
<th>Closed World LSTM ±</th>
<th>Open World LSTM ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux i5-2500</td>
<td>6 MB</td>
<td>Firefox 59</td>
<td>2.0 ms</td>
<td>78.5±1.7</td>
<td>80.0±0.6</td>
<td>86.8±0.9</td>
<td>87.4±1.2</td>
<td></td>
</tr>
<tr>
<td>Linux i5-2500</td>
<td>6 MB</td>
<td>Chrome 64</td>
<td>0.1 ms</td>
<td>84.9±0.7</td>
<td>91.4±1.2</td>
<td>84.3±0.7</td>
<td>86.4±0.3</td>
<td></td>
</tr>
<tr>
<td>Windows i5-3470</td>
<td>6 MB</td>
<td>Firefox 59</td>
<td>2.0 ms</td>
<td>86.8±0.7</td>
<td>87.7±0.8</td>
<td>84.3±0.6</td>
<td>87.7±0.3</td>
<td></td>
</tr>
<tr>
<td>Windows i5-3470</td>
<td>6 MB</td>
<td>Chrome 64</td>
<td>0.1 ms</td>
<td>78.2±1.0</td>
<td>80.0±1.6</td>
<td>86.1±0.8</td>
<td>80.6±0.2</td>
<td></td>
</tr>
<tr>
<td>Mac OS i7-6700</td>
<td>8 MB</td>
<td>Safari 11.1</td>
<td>1.0 ms</td>
<td>72.5±0.7</td>
<td>72.6±1.3</td>
<td>80.5±1.0</td>
<td>72.9±0.9</td>
<td></td>
</tr>
<tr>
<td>Linux i5-2500</td>
<td>6 MB</td>
<td>Tor Browser 7.5</td>
<td>100.0 ms</td>
<td>45.4±2.7</td>
<td>46.7±4.1</td>
<td>60.5±2.2</td>
<td>62.9±3.3</td>
<td></td>
</tr>
<tr>
<td>Linux i5-2500</td>
<td>6 MB</td>
<td>Tor Browser 7.5 (top 5)</td>
<td>100.0 ms</td>
<td>71.9±2.1</td>
<td>70.0±1.7</td>
<td>80.4±1.7</td>
<td>82.7±1.8</td>
<td></td>
</tr>
</tbody>
</table>

As discussed earlier, this also significantly increases the base rate for open-world scenarios to 33.3%.

As in the case of the closed-world setting, we can evaluate the accuracy of the Tor Browser under a top-5 assumption, i.e. when checking for the correct website in the top five outputs of the classifier. Under this relaxation the Tor Browser achieves a high accuracy rate of 83%, with a base rate of 37.3%.

The classification to sensitive vs. non-sensitive site is a binary classification problem. We can, therefore, apply standard analysis techniques to this aspect of the results. We achieved a near perfect classification in all of the open world settings we evaluated, achieving an area under curve (AUC) of more than 99% in all cases.

7 Robustness Tests

Having demonstrated the effectiveness of our website fingerprinting technique, we now turn our attention to its robustness and test its resilience to issues known to affect network-based fingerprinting.

7.1 Evaluation Setup

![Figure 5: Data Collection Setup for the Robustness Tests.](image)

To compare the results of network fingerprinting with cache-based fingerprinting, we need to modify our data collection setup. The setup, illustrated in Figure 5, consists of two data collection hosts. The memorygram collection host, which simulates the victim’s machine, runs both the target browser and the memorygrammer software. The network tracer sits on-path between the memorygram collection hosts and the Internet, and collects a record of the network traffic. A test harness written in Perl and Python invokes the memorygrammer, the network tracer and the target browser at the same time, then saves a correlated data record consisting of the memorygram, the network trace in pcap format, and a screenshot of the target web page for monitoring purposes. For data collection, we use HP Elite 8300 desktop computers featuring Intel Core i5-2500 CPUs at 3.30 GHz, with a 6 MB last-level cache, running CentOS 7.2.1511 and either Firefox 59 or Tor Browser 7.5.

For the robustness tests we use a native-code memorygrammer, which is based on the Prime+Probe implementation of Mastik, a side-channel toolkit released under the GNU Public License [95]. We apply two modifications to the Mastik code. First, we change the Prime+Probe code to measure cache occupancy rather than activity in specific cache sets. Secondly, we use the processor’s performance counters [41] to count the number of cache evictions rather than use the high resolution timer to identify evictions. The use of performance counters for attack purposes has already been proposed and investigated in the past [6, 9, 52, 84].

7.2 Baseline Scenario

Our baseline scenario replicates the results of our closed world JavaScript memorygrammer, as well as some of the results of Rimmer et al. [73]. As we can see in Table 3, the native-code memorygrammer gives a slightly better accuracy than the JavaScript memorygrammer on Firefox. When attacking the Tor Browser, the native code memorygrammer achieves much better results than the in-browser JavaScript code. We believe that the cause of the improvement is the higher probing accuracy afforded by the native-code memorygrammer. In both browsers, the results of the native-code memorygrammer are similar to those achievable with network-based fingerprinting.
7.3 Enabling the Response Cache

Network-based fingerprinting methods, by definition, must rely on network traffic to perform classification. Typically, due to caching, many web pages are loaded with partial or no network traffic. As specified in RFC 7234 [24], the performance of web browsers is typically improved by the use of response caches. When a web browser client requests a remote resource from a web server, the server can specify that a particular response is cacheable, and the web browser can then store this response locally, either on disk or in memory. When the page is next requested, the web browser can ask the server to send the response only if it has been modified since the last time it was accessed by the client. In the case of a response cache hit, the server only returns a short header instead of the complete remote resource, resulting in a very short network traffic sequence. In some cases, the client can even reuse the cached response without querying the server for a remote copy, resulting in no network traffic at all. Herrmann et al. [36] demonstrate a significant decrease in the accuracy of web fingerprinting when the browser uses the response cache. Indeed, deleting or disabling the browser cache prior to fingerprinting attacks is a common practice [66, 88].

We enable caching of page contents by the browser, and measure the effect on fingerprinting accuracy. In the Firefox browser we simply refrain from clearing the response cache between sessions. For privacy reasons, the response cache in the Tor Browser does not persist across session restarts. Hence, when collecting data on the Tor Browser we “prime” the cache before every recording by opening the web page in another tab, allowing it to load for 15 seconds, then closing the tab.

When we keep the browser’s response cache, the advantage of cache-based website fingerprinting starts to emerge. As Table 3 shows, the accuracy of the standard network-based methods degrades when the response caching is enabled. We can see a degradation in accuracy of over 20% in the fingerprinting accuracy.

In contrast, the cache-based methods are largely unaffected by the reduction in network traffic, achieving high accuracy rates. This result supports the conclusion that the cache-based detection methods are not simply detecting the CPU activity related to the handling of network traffic, making them essentially a special case of network-based classifiers, but are rather detecting rendering activities of the browser process.

7.4 Net-only and Render-only Results

Oren et al. [64] show that cache activity is correlated with network activity, raising the possibility that cache-based fingerprinting basically identifies the level of network activity. To rule out this possibility and show that website rendering also contributes to fingerprinting, we separate rendering (or more precisely, data processing) activity from handling of network data.

Render-Only Fingerprinting. To capture the data processing activity, we neutralize the network activity by guaranteeing constant traffic levels. More specifically, we apply molding to the network traffic, ensuring that data flow between the collection host and the network at a fixed bandwidth of 10 KB every 250 ms. To achieve that, we queue data transmitted at a higher rate, or send dummy packets when the transmitted data does not fill the desired bandwidth. These dummy packets are silently dropped by the receiver. The approach is, basically, BuFLO [22], with $\tau = \infty$, i.e., when the data stream continues indefinitely. This approach has a high bandwidth overhead compared to WTF-PAD and WT, however, it is designed to ensure that the network traffic is constant irrespective of the contents of the website. As expected, the raw network captures in this scenario all have the exact same size, which happens to be twice as large as the largest network capture recorded without traffic molding.

Because all the traces are identical, the network-based classifier assigns the same class to all of the traces, and its accuracy is the same as a random guess. The results of cache-based fingerprinting show a drop in accuracy compared with unmolded traffic. However, the accuracy is still significantly better than a random guess. This experiment demonstrates the resilience of cache-based website fingerprinting to mitigation techniques aimed at network-based fingerprinting.

<table>
<thead>
<tr>
<th>Test</th>
<th>Firefox Network</th>
<th>Firefox Cache</th>
<th>Tor Network</th>
<th>Tor Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNN</td>
<td>LSTM</td>
<td>CNN</td>
<td>LSTM</td>
</tr>
<tr>
<td>Baseline</td>
<td>86.4±1.0</td>
<td>93.2±0.5</td>
<td>94.9±0.5</td>
<td>94.8±0.5</td>
</tr>
<tr>
<td>Response cache enabled</td>
<td>56.1±1.5</td>
<td>70.6±1.5</td>
<td>92.2±0.8</td>
<td>92.2±0.5</td>
</tr>
<tr>
<td>Render only</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Network only</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Temporal drift</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3: Accuracy obtained in robustness tests — Mean (percents) and Standard deviation.
and suggests that this privacy threat should be countered using a different class of mitigation techniques, as we explore further in Section 9.

Network-Only Fingerprinting. In a complementing experiment, we aim to capture only the network traffic. To collect this dataset, we first capture actual traffic data from a real browsing session. We then use a mock setup, that does not involve a browser at all. Instead, we use two tcpreplay [1] instances, one at the collection host, and the other at a server, to emulate the network traffic, by replaying the data from the pcap file.

The results for this experiment show that the cache-based classifier is capable of classifying many pages even when no rendering activity is taking place. However, the accuracy is significantly lower than in the case that rendering activity does take place. In particular, our CNN classifier only detects the correct website in about 20% of the cases, significantly lower than the 73% we get for the matching closed-world scenario. (But still much better than the 1% expected for a random guess.) The accuracy of the network-based classifier is the same as for the baseline, simply because the network traffic is replicated.

Combining these two experiments we therefore conclude that cache-based fingerprinting identifies features both in the network traffic patterns and in the actual contents of the displayed web pages.

7.5 Dealing with Temporal Drift

The accuracy of network-based website fingerprinting decays over time, when the contents of the website changes [73]. Many websites use content management systems (CMS), in which the page layout is based on a fixed template design, and only the resources loaded into this template vary over time. Since, as we have shown, the cache-based fingerprints capture rendering activities as well as network activities, it would seem that the rendering-related traces recorded by the cache-based method would have a longer lifetime, and be more resistant to drift, than the network-related traces captured by the traditional method.

To test this hypothesis, we repeat the data collection of the baseline experiment after a delay of 36 days (start to start). We then measure the ability of both cache-based and network-based classifiers to accurately classify the new traces, after being trained on the old traces. In this setting, we see a drop of 5–10% in the accuracy of both classifiers. We believe that further experiments are required for accurately assessing how cache-based and network-based fingerprinting handle temporal drifts.

8 Detecting Unknown Hardware Configurations

In contrast to network-based fingerprinting, which is largely target agnostic, cache-based fingerprinting needs to be tailored to the precise hardware configuration of the victim machine, specifically the set count and associativity of its last-level cache. Using a too large or a too small buffer reduces the effectiveness of the technique, and eventually the accuracy of the classifier. There are, however, not that many popular configurations. For example, four cache configurations (4096 or 8192 sets, 12 or 16 ways) cover most of the Intel Core processor models.

If the target hardware configuration is known beforehand (assuming, for example, that a particular user is singled out for attack) the attacker can customize the parameters of the JavaScript attack code to match the target PC’s parameters. It would be interesting, however, to see how well an attacker can remotely determine an unknown target’s cache configuration using JavaScript. To investigate this, we created a JavaScript program that allocates a 20MB array in memory and iterates over it in several patterns which should fit well into different configurations of cache set-counts and associativities. We then recorded the minimum, maximum and mean access time per element, plus the standard deviation, for each of these configurations. We collected 1,350 such measurements from multiple systems with cache sizes of 3 MB, 4 MB, 6 MB, and 8 MB. We then used MATLAB’s classification learner tool to apply a variety of machine learning classifiers to the measured data. Using both KNN and SVM classifiers, we were able to correctly classify the configuration of the target’s last-level cache with over 99.8% classification accuracy under 5-fold cross validation. Interestingly, even a simple tree-based classifier which compared the minimum iteration time of three different configurations to a predefined threshold was 99.6% accurate. We ported this simple tree-based classifier to JavaScript, creating an LLC cache size detector which we tested and found capable of accurately detecting the cache sizes of 15 different machines with diverse browser, hardware and operating system configurations, taking less than 300 ms to run in all cases. Thus generic attacks that adapt to the specific hardware configuration seem feasible.

9 Countermeasures

We now discuss potential countermeasures to our fingerprinting attack. We first describe a cache masking technique we experimented with. We then follow with a review of other cache attack countermeasures suggested in the literature.
9.1 Cache Activity Masking

One well-studied mitigation method from the domain of network-based cache fingerprinting involves creating spurious network activity to mask the actual website traffic [22]. It is possible to adopt such a masking technique to our domain and mask the actual website rendering activity by creating spurious activity in the cache. Our initial experiments show that this is a promising mitigation, but further research is needed to assess its effectiveness and its effect on performance and on power consumption.

Masking implementation. Our countermeasure repeatedly evicts the entire last-level. More specifically, we allocate a cache-sized buffer and access every cache line in the buffer in a loop. Such masking could be applied in the browser, in the operating system, as a browser plugin, and even incorporated into a security-conscious website in the form of JavaScript delivered to the client. For our initial proof of concept implementation we chose to implement the countermeasure as a standalone native code application, based on a modification of the Mastik side-channel toolkit [95]. This setting allows us to investigate the effectiveness of our countermeasure while leaving deployment complexities for future work.

Evaluation. We evaluated this countermeasure on a desktop computer featuring an Intel Core i5-2500, running CentOS Linux version 7.6.1810. We enabled the countermeasure, then collected website traces both for Firefox (Linux) and for the Tor Browser, using the same mix of traces described in Section 4.2—10,000 traces for the closed-world scenario, consisting of 100 traces for each of the Alexa top 100 websites, and 5,000 additional traces for the open-world scenario, each collected for a single unique website. We split the data set into training, testing and validation sets and applied 10-fold cross validation, as described in more detail in Section 5.2.

Our experiments show that the countermeasure completely thwarts the attack when training is done on an unprotected system—the accuracy of our classifier was at or below the base rate of 1% for the closed-world scenario and 33% for the open-world scenario. We also evaluated a scenario in which the adversary is allowed to train on traces with the countermeasure applied. In this more challenging scenario, the countermeasure completely thwarts the attack when the attack code is running from the Tor Browser. On Firefox, however, we only noticed a moderate reduction in the effectiveness of the attack. In the closed world scenario, the attack achieves 73% success and in the open world the success rate is 77%. (Down from 79% and 86%, respectively.)

Performance Impact. To understand the effect that our countermeasure has system performance, we used the industry-standard SPEC CPU benchmark [79], the de facto standard benchmark for measuring the performance of the CPU and the memory subsystems. Figure 6 shows the results of the SPEC CPU 2006 benchmarks with our countermeasure, relative to no countermeasure. The countermeasure causes a slowdown of around 5% (geometric mean across the benchmarks) with a worst case slowdown of 14% for the bwaves benchmark. These results are from the average of ten executions of the benchmarks for each case. With Tor network performance being as it is, we believe that the performance hit on CPU benchmarks is acceptable for this scenario.

9.2 Other Countermeasures

Most of the past research into cache attacks has been done in the context of side-channel cryptanalysis. Due to the different scenario, many of the countermeasures typically suggested for cache-based attack are no longer effective. Techniques such as constant-time programming [5] are only applicable to regular code, typically found in implementations of cryptographic primitives. It is hard to see how such techniques can be applied to web browsers. Similarly, as
this work demonstrates, timer-based defenses that reduce the timer frequency or add jitter are not effective.

Cache randomization techniques [58, 70, 91] dissociate victim and adversary cache sets, and prevent the adversary from monitoring victim access to specific addresses. However, our attack measures the overall cache activity rather than looking at specific victim accesses. As such, such techniques are unlikely to be effective against our attack.

Cache partitioning, either using dedicated hardware [21, 91] or via page coloring [55], is a promising approach for mitigating cache attacks. In a nutshell, the approach partitions the cache between security domains, preventing cross-domain contention. Web pages are often rendered within the same browser process. A page-coloring countermeasure will, therefore, need to adapt to the browser scenario. Alternatively, the current shift to strict site isolation [81] as part of the mitigations for Spectre [48], may assist in applying page coloring to protect against our attack. A further limitation of page coloring is that caches support only a handful of colors. Hence, colors need to be shared, particularly when a large number of tabs are open. To provide protection, page coloring will have to be augmented with a solution that prevents concurrent use of the same color by multiple sites.

CACHEBAR [97] limits the contention caused by each process as a protection for the Prime+Probe attack. Like cache partitioning, this approach works at a process resolution and may require adaptations to work in the web browser scenario. Furthermore, unlike past cryptographic attacks that aim to identify specific memory accesses, our technique measures the overall memory use of the victim. Consequently, unless CACHEBAR is configured to partition the cache, some cross-process contention will remain, allowing our attack to work.

10 Limitations and Future Work

While the work demonstrates the feasibility of cache-based website fingerprinting and provides an analysis of the attack, it does leave some areas for further study. Being the first analysis of its kind, the scope of the work does not match the scope of similar works on network-based website fingerprinting. In particular, our datasets are significantly smaller than those of Rimmer et al. [73], for example. Providing larger datasets would allow better analysis of the effectiveness of the technique and would be a beneficial service for the research community as a whole.

In this work we collected the memorygrams on the same hardware configuration used by the victim PC. While we show that we can adapt the data collection to the specific victim hardware (Section 8), at this stage it is not clear how much a classifier trained on data collected with one hardware configuration would be effective for classifying memorygrams collected on a different configuration.

In the network-based website fingerprinting scenario, little to no traffic travels through the network unless the user is actively fetching a webpage. In the cache-based scenario, however, the cache is always active to a degree, even before the browser starts to receive and render the webpage. Recognizing the start of a trace may therefore be more difficult in the cache-based setting than in the network-based setting, especially in the case of a real attack. Our framework implicitly synchronizes the trace with the start of the download. Due to varying network conditions, we see differences of up to six seconds between trace start and render start. As such, we believe that our technique can identify websites even without the synchronization. Further experimentation is required, however, to verify this fact. We also note that if the machine is otherwise idle, cache activity can serve as a (slightly noisy) indicator of the start of the trace.

The work further shares many of the limitations of network-based fingerprinting [46]. In particular, websites tend to change over time or based on the identity of the user or the specifications of the computer used for displaying them. Furthermore, our work, like most previous works, assumes that only one website is displayed at each time. Both Rimmer et al. [73] and our work briefly discuss temporal aspects of website fingerprinting, and we also looked a bit into the issue (Section 7.5). However, further work is required to assess the impact of this and other variables on the efficacy of cache-based fingerprinting.

11 Conclusions

In this work we investigate the use of cache side channels for website fingerprinting. We implement two memorygrammers, which capture the cache activity of the browser, and show how to use deep learning to identify websites based on the cache activity that displaying them induces.

We show that cache-based website fingerprinting achieves results comparable with the state-of-the-art network-based fingerprinting. We further show that cache-based fingerprinting outperforms network-based fingerprinting under a common operating scenario, where the browser maintains cached objects. Finally, we demonstrate that cache-based fingerprinting is resilient to both traffic molding and to reduced timer resolution. The former being the standard defense for network-based website fingerprinting and the latter the currently implemented countermeasure for mobile-code-based microarchitectural attacks. To the best of our knowledge, this is the first cache-based side channel attack that works with the 100 ms clock rate of the Tor Browser.

Acknowledgements

We would like to thank Vera Rimmer for her helpful comments and insights. We would also like to thank Roger Dingledine and our shepherd Rob Jansen for reviewing and commenting on the final version of this paper.
This research was supported by the ARC Centre of Excellence for Mathematical & Statistical Frontiers, Intel Corporation, Israel Science Foundation grants 702/16 and 703/16, NSF CNS-1409415, and NSF CNS-1704105.

References

A Selected Hyperparameters

Tables 4, 5, and 6 summarize the hyperparameters for the classifiers used in this work.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4: Hyperparameters for the CNN classifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
<td>Adamax, Adam, SGD, RMSprop</td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.001</td>
<td>0.001–0.002</td>
</tr>
<tr>
<td>Batch size</td>
<td>100</td>
<td>40–100</td>
</tr>
<tr>
<td>Training epoch</td>
<td>20–30</td>
<td>Early stop by accuracy</td>
</tr>
<tr>
<td>Convolution layers</td>
<td>3</td>
<td>3–4</td>
</tr>
<tr>
<td>Input units (FF)</td>
<td>15000</td>
<td>15000–25000</td>
</tr>
<tr>
<td>Input units (Tor)</td>
<td>25000</td>
<td>15000–25000</td>
</tr>
<tr>
<td>CNN activation</td>
<td>relu</td>
<td>relu, tanh</td>
</tr>
<tr>
<td>Kernels</td>
<td>256</td>
<td>2–512</td>
</tr>
<tr>
<td>Pool size</td>
<td>4</td>
<td>2–8</td>
</tr>
</tbody>
</table>

| **Table 5: Hyperparameters for the LSTM classifier** |
Optimizer	Adam	Adamax, Adam, SGD, RMSprop
Learning rate	0.001	0.001–0.002
Batch size	100	40–100
Training epoch	20–30	Early stop by accuracy
Convolution layers	2	1–3
Input units (FF)	15000	15000–25000
Input units (Tor)	25000	15000–25000
CNN activation	relu	relu, tanh
LSTM activation	tanh	relu, tanh
Kernels	256	2–512
Kernel size	16,8	2–32
Pool size	4	2–8
Dropout	0.2	0.1–0.2
LSTM units	32	8,32

Table 6: Hyperparameters for the LSTM classifier for the Tor attack

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>Adam, Adamax, Adam, SGD, RMSprop</td>
<td></td>
</tr>
<tr>
<td>Learning rate</td>
<td>0.001</td>
<td>0.001–0.002</td>
</tr>
<tr>
<td>Batch size</td>
<td>100</td>
<td>40–100</td>
</tr>
<tr>
<td>Training epoch</td>
<td>20–30</td>
<td>Early stop by accuracy</td>
</tr>
<tr>
<td>Convolution layers</td>
<td>1</td>
<td>1–3</td>
</tr>
<tr>
<td>Input units</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>CNN activation</td>
<td>relu, tanh</td>
<td>relu, tanh</td>
</tr>
<tr>
<td>LSTM activation</td>
<td>tanh</td>
<td>relu, tanh</td>
</tr>
<tr>
<td>Kernels</td>
<td>256</td>
<td>2–512</td>
</tr>
<tr>
<td>Kernel size</td>
<td>32</td>
<td>2–32</td>
</tr>
<tr>
<td>Pool size</td>
<td>3</td>
<td>2–8</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.4</td>
<td>0.1–0.4</td>
</tr>
<tr>
<td>LSTM units</td>
<td>128</td>
<td>8,32,128</td>
</tr>
</tbody>
</table>

B Websites Included in Closed-World Datasets

9gag.com | abs-cbn.com | gamepedia.com
adf.ly | adobe.com | go.com
aliexpress.com | allegro.pl | goodreads.com
godaddy.com | apple.com | hclips.com
google.com | ask.com | hotmovs.com
hola.com | blastingnews.com | instructure.com
imdb.com | businessinsider.com | komps.com
intuit.com | dailymail.co.uk | liputan6.com
leboncoin.fr | detik.com | livejournal.com
livejasmin.com | dictionary.com | microsoftonline.com
lt.com | doubleclick.net | msn.com
mozilla.org | ebay.com | netflix.com
naver.com | espncricinfo.com | nih.gov
nicovideo.jp | deviantart.com | office.com
ntd.tv | doublepimp.com | openload.co
onedio.com | extratorrent.cc | ouo.io
oracle.com | facebook.com | pinterest.com
outbrain.com | feedly.com | quora.com
popads.net | gamepedia.com | roblox.com
researchgate.net | github.com | rutracker.org
rt.com | godaddy.com | skype.com
scribd.com | goodreads.com | sourceforge.net
soundcloud.com | google.com | stackoverflow.com
spotify.com | hola.com | steampowered.com
stackexchange.com | hotmovs.com | theguardian.com
steamcommunity.com | hotmovs.com | tistory.com
t.co | imdb.com | torrentz2.eu
thesaurus.com | instructure.com | tumblr.com
tokopedia.com | microsoftonline.com | weather.com
tribunnews.com | mozilla.org | wikipedia.org
twitter.com | naver.com | xhamster.com
wikia.com | netflix.com | yandex.ru
wittyfeed.com | nih.gov | zippyshare.com
xvideos.com | openload.co |