
From Smashed Screens to Smashed Stacks: Attacking Mobile Phones
Using Malicious Aftermarket Parts

Omer Shwartz, Guy Shitrit, Asaf Shabtai, Yossi Oren

Ben-Gurion University
Beer-Sheva, Israel

omershv@post.bgu.ac.il, shitritg@post.bgu.ac.il, shabtaia@bgu.ac.il, yos@bgu.ac.il

Abstract—In this preliminary study we present the
first practical attack on a modern smartphone which
is mounted through a malicious aftermarket replace-
ment part (specifically, a replacement touchscreen).
Our attack exploits the lax security checks on the
packets traveling between the touchscreen’s embed-
ded controller and the phone’s main CPU, and is
able to achieve kernel-level code execution privileges
on modern Android phones protected by SELinux.
This attack is memory independent and survives data
wipes and factory resets. We evaluate two phones
from major vendors and present a proof-of-concept
attack in actual hardware on one phone and an em-
ulation level attack on the other. Through a semi-
automated source code review of 26 recent Android
phones from 8 different vendors, we believe that our
attack vector can be applied to many other phones,
and that it is very difficult to protect against. Similar
attacks should also be possible on other smart devices
such as printers, cameras and cars, which similarly
contain user-replaceable sub-units.

1. Introduction

Consumer devices often have components which can
be replaced by the user or by third-party service centers.
These components are generally called field-replaceable
units, or FRUs. Examples of devices with FRUs include
interface cards for routers; touch screen, battery and
sensor assemblies for mobile phones; ink cartridges for
printers; batteries for health sensors; and so on. These
replaceable units typically have their own microproces-
sors and code spaces, and use a very strictly defined
hardware or software API to communicate with the
device’s main secure CPU, as shown in Figure 1. Most
sensors and hardware peripherals communicate over
simple interfaces such as I2C (Inter Integrated Chip) and
SPI (Serial Peripheral Interface), these interfaces are
very lightweight and offer no embedded authentication
mechanisms or error detection capabilities [1].

Programs running on a smart device’s main CPU
interface with the FRUs using device drivers. These

User Device

Main Logic Board

Auxiliary Board

Main CPU

Aux. CPU

Internal Bus

Aux. 
Memory

Main 
Memory

Figure 1. A user device with a field-replaceable accessory board.

drivers often run in privileged mode with kernel-level
permissions. In most cases, FRUs are manufactured by
third-party original equipment manufacturers (OEMs).
Thus, the source code for FRU drivers is supplied by
the OEMs to the phone manufacturers, and the phone
manufacturers then proceed to integrate this code into
their own source code, making minor adjustments to
account for minute differences between phone models
such as memory locations, I/O bus identifiers, etc. As we
show in Section 3, these minor tweaks and modifications
make the process of creating and deploying patches for
these drivers a very difficult endeavor.

In contrast to network or USB drivers, FRU drivers
are typically written under the assumption that an au-
thentic, fully trusted hardware component is present on
the FRU side. As a result, very few integrity checks are
performed on the communication between the FRU’s
embedded controller and the phone’s main CPU. We
aim to show that the assumption of a benign FRU is a
very risky one to make.

In the remainder of this paper we focus our discus-
sion on replacement touch screen assemblies. According
to a global survey carried out in 2015 by Motorola Mo-



bility, around 21% of global smartphone users currently
have a cracked or shattered phone screen [2]. Assuming
a very conservative estimate of two billion smartphones
in the world, this means there are more than 400 million
phones worldwide with a cracked screen. For compari-
son, the Mariposa botnet, which was the largest ever
recorded, consisted of about 10 million computers [3].
While some users replace their phone screens using au-
thentic hardware at the original vendors’ laboratories,
most touchscreen replacements are performed in third-
party repair shops. These repair shops often use the
cheapest possible screens and thus often provide, know-
ingly or unknowingly, counterfeit or unbranded sub-
units. As recently shown by UL [4], a large proportion of
presumably authentic replacement hardware purchased
on third-party marketplaces such as Amazon or eBay is
counterfeit.

In our attack model, we assume that a user has
replaced her phone’s touchscreen with a counterfeit, ma-
licious component. Such component may include tam-
pered firmware or an embedded malicious IC. Quite
trivially, this exposes the user to the risk of key-logging
or malicious impersonation. However, as we show in this
paper, this counterfeit component can also abuse the
CPU-FRU communication bus and achieve kernel-level
code execution privileges on the phone.

Our contributions are as follows: we show a proof-of-
concept of a physical environment with stock firmware
being coerced into running code from an arbitrary mem-
ory address; we also show an end-to-end attack in a
physical environment with modified software allowing
an app to gain root privileges and disable security
measures; and we present an analysis highlighting the
difficulty in protecting today’s devices.

2. The Attack

The objective of our attack was to cause a stock
phone running unmodified software to execute arbitrary
code by sending malicious inputs through its touch-
screen interface. Our initial analysis used a high-end
Android phone currently on sale by a major US vendor1.

2.1. Attack Setup

Our attack setup consists of two parts, a software
assisted environment where a full end-to-end attack is
shown and a pure physical setup where a preliminary
attack is achieved.

2.1.1. Software Assisted Environment. For the
software-assisted hardware proof-of-concept, we used
normal production configuration used in the stock
firmware present on the device, based on Android 6.0.1.

1. The phone’s vendor and model, as well as full details on the
chain of compromises we used to attack it, will be disclosed after
the conclusion of a responsible disclosure process.

Figure 2. Exposing the mobile phone’s touchscreen interface. Inset:
wires soldered onto the touch controller communication connec-
tion.

We then modified the kernel so that it includes over-
loaded functions that replace the communication API
between the touchscreen driver and the touchscreen.
These functions allow intercepting and injecting of pack-
ets in the scope of the driver-touchscreen interface. No
other parts of the kernel were modified, allowing us to
mimic a tampered touchscreen module with minimal
kernel modifications. This setup was then tested both
in emulation and on the actual phone hardware.

2.1.2. Pure Physical setup. For the full hard-
ware proof-of-concept, an identical phone running stock
firmware was disassembled, and the touchscreen con-
troller communication bus was made accessible, as
shown in Figure 2. A programmable microcontroller
was then placed on the communication bus between
the touchscreen and the CPU, allowing custom-crafted
responses to be sent to the CPU.

2.2. Preliminary Results

Using our software-assisted hardware setup, we were
able to cause several driver software faults which in-
troduced a critical vulnerability into the Android ker-
nel. The vulnerability discovered was exploited using
a Return Oriented Programming (ROP) chain (Fig. 3)
designed for the ARM64 architecture. This exploitation
chain was used to cause a second vulnerability in a user-
facing interface. The next step in the attack involved
launching an auxiliary user-mode app with no special
permissions. This app was capable of continuing the at-
tack by exploiting the new vulnerability via a system call



Figure 3. Depiction of the ROP chain resulting in modification of
kernel write-protected memory. Gadgets one, two, and three load
predefined memory addresses and values from the stack and result
in a function call to mem_text_write_kernel_word(), a function
that writes over protected kernel memory.

that is normally benign, with the end result of gaining
root privileges while disabling the SELinux protection
mechanism. Note that our attack model, which assumes
a compromised touchscreen, explicitly allows the at-
tacker to perform unauthenticated actions on behalf of
the user.

Using our full hardware-based setup, it was possi-
ble to send the custom crafted corrupted data during
the boot process while injecting data that exploits two
vulnerabilities within the device driver. This caused a
kernel thread to execute an arbitrary memory address
and crash.

3. Driver and Peripheral Diversity in the
Android Mobile Phone Landscape

Since our attack used a combination of first-party
and OEM code, we were interested in testing the speci-
ficity of these vulnerabilities to specific phone models. In
order to investigate this question systematically, we pro-
duced a driver-level inventory of several popular hand-
sets, and observed the diversity of today’s peripheral
landscape.

As a consequence of the open-source public license
used for Android and for some of its subcomponents,
phone vendors are required to release the source code for
various Android phones they produce. We downloaded
and reviewed the source code of 26 recent Android
phones from eight vendors and mapped the features and
drivers employed by the devices. This allowed us to ob-
serve the diversity and uniqueness of the drivers used as
well as assess the difficulty in auditing and maintaining
their security. For each phone, the most recent version
of the kernel source code was downloaded from the
manufacturers website. The default configuration was
located and loaded into a script based on kconfiglib.py
[5] and the functional drivers were listed.

The actions above allowed us to determine the ven-
dors of the drivers and compare drivers across phones
in the purpose of finding identical versions. As shown in

Phone model Touch-
screen

NFC Charger
IC

Battery Wire-
less

Charger
HTC Desire 626 Synt1,

Atmt1
NXPn1 Sumc1 Maxb1 —

HTC One A9 Synt2 NXPn2 Sumc2 HTCb1 —
HTC One M9+ Synt3

Maxt1
NXPn3 Sumc3 HTCb2 —

Huawei Honor 5X Synt4 NXPn4 Huac1 TIb1 —
Huawei Nexus 6P Synt5 *NXPn5 Quac1 Quab1 —
Lenovo K3 Note Medt1 — Medc1 Medb1 —
Lenovo K5 Note Medt2 Quan1 Sumc4 Medb2 —

Lenovo Vibe K4 Note Medt3 Medn1 Texc1 Medb3 —
LG Nexus 4 E960 Synt6 Bron1 Intc1 TIb2 TIw1

LG Nexus 5 Synt7 Bron2 Sumc5 TIb3 TIw2
LG G3 Atmt2 NXPn6 Sumc6 *TIb4,

Maxb2
TIw3

LG G4 Synt8 NXPn7 Sumc7 Maxb3 —
LG Nexus 5X Synt9 *NXPn5 Quac2 Quab2 —

Motorola Nexus 6 Atmt3 Bron3 Sumc8 TIb5,
Maxb4

Motw1

Samsung Galaxy S5 Atmt4 NXPn8,
Bron4

Sumc9 TIb6,
Maxb5

—

Samsung Galaxy S6 *STMt1 Samn1 *Maxc1 *Maxb6 Texw4
Samsung Galaxy S6 edge *STMt1 Samn2 *Maxc1 *Maxb6 Texw5

Samsung Galaxy S6 edge+ STMt2 Samn3 *Maxc1 *Maxb6 Texw6
Samsung Galaxy S7 Samt1 NXPn9,

Samn4
Maxc2 Maxb7 IDTw1

Samsung Galaxy S7 edge Samt2 NXPn10,
Samn5

Maxc3 Maxb8 IDTw2

Sony Xperia Z2 Maxt2 NXPn11 Quac3 *TIb4,
Maxb9

—

Sony Xperia M4 Aqua Synt10 NXPn12 Quac4 Sumb1 —
Sony Xperia M5 Synt11 NXPn13 Medc2 Medb4 —
Sony Xperia Z5 Synt12,

Atmt5
NXPn14 Sumc10 TIb7 —

Sony Xperia E5 Medt4 Medn2 Medc3 Medb5 —
Sony Xperia XA Medt5 Medn3 Qnoc1 Medb6 —

Table 1. Driver survey. Digits indicate unique version of
driver. Drivers shared by multiple phones are marked by

*. Vendors: Mot: Motorola Mobility; Med: MediaTek;
Bro: Broadcom; TI: Texas Instruments; Sam: Samsung;
Qno: Qnovo; Hua: Huawei; Int: Intersil; Sum: Summit

Microelectronics; Qua: Qualcomm; Syn: Synaptics; STM:
STMicroelectronics; Atm: Atmel; Max: Maxim Integrated.

Table 1 the output of our survey revealed a vast variance
of peripheral vendors across the inspected devices. Of
the 89 different drivers we evaluated, only three were
used in two or more phone models, and only two were
used on three or more phone models. Most of the drivers
were unique to their respective device and only a handful
of drivers identical among different devices were found.

4. Discussion

We showed how a malicious payload delivered by a
touchscreen can let an unprivileged app obtain unlimited
access to system resources and information on a smart-
phone. In this section we will discuss the ramifications
of such attacks and review both previously explored and
unexplored defenses against threats of this kind.

4.1. Analysis of the Attack Surface

There are several unique advantages to this attack
method, when compared to traditional malware. First,
the attack can be carried out on a phone running a stock
operating system, and without having the user perform
any action. This makes it difficult to protect against
the attack by corporate or carrier-level security policies,
or by user education. Second, the attack is performed
in a way that leaves no persistent memory footprints.
Thus, it is impossible for the kernel or for any antivirus
software to detect the malicious activity. Third, since the



attack is located outside the phone’s standard storage,
it can survive phone factory resets, remote wipes, and
firmware updates.

Attacks based on malicious hardware can be divided
into two different classes. First-order attacks interact
with the phone in the ways a standard user would, but
without the user’s consent. In the case of a malicious
touchscreen, the malicious peripheral may log the user’s
touch activity, or impersonate user touch events in order
to call a premium phone number or install malware.
Second order attacks go beyond exchanging properly-
formed data, and attempt to cause a malfunction in
the device driver and compromise the operating system
kernel. While the results shown here present a successful
second order attack, it is still interesting to investigate
first order methods on their own, and especially interest-
ing to investigate the combination of both first order and
second order attack, in which simulated user interaction
is used to enhance a kernel exploit.

The reality we discovered, where every phone model
contains a unique driver/version combinations, paints
a problematic picture. With thousands of smartphone
varieties being used by customers all over the world,
maintaining their security is a daunting task.

4.2. Possible Countermeasures

Devices today are being protected from malicious
USB or Ethernet connections by means of encryption,
blocking, authentication and active detection of suspi-
cious traffic. Such methods can be modified and used on
other protocols for communication with device peripher-
als. Due to the dynamic evolvement of smartphones and
smartphone drivers, possible countermeasures should be
as generic and adaptive as possible. Preventive coun-
termeasures may include signature verification of the
peripheral and related drivers, e.g. using certificates.
Detective countermeasures can be in the form of an
intrusion detection component that analyzes the com-
munication between the replaceable units and drivers in
a trusted manner and detects anomalies.

4.3. Related Work

Smartphones have been a growing target for mali-
cious attacks in the past decade. Some of these attacks
are caused by adversaries who abuse the permissions
they are explicitly or implicitly given by the user. At-
tackers can also use various software flaws to maliciously
increase their permission level, and thus increase the
amount of damage they are capable of causing. These
attacks usually result in money theft, exfiltration of
private data, aggressive advertising and fraud [6]. Tools
and methods for counteracting existing and upcoming
malware are being constantly developed and reviewed
[7], [8], [6]. While there is a growing focus recently on on
the hardware aspect of smartphone security, most secu-

rity papers still consider the smartphone’s hardware as
inviolate and are only examining malware-based attacks.

One well-known hardware interface for attacks is
the Universal Serial Bus (USB). USB is a widespread
standard defining the physical interface and protocols
for communication between electronic devices over mul-
tiple profiles. The versatility of USB requires careful
implementation and broad restrictions against abuse
and attacks. Several vulnerabilities have been found in
the past that affect Android based phones and allow
an attacker to use USB for gaining privileged access
to a vulnerable device [9]. Android security patches are
released on a monthly basis. A review of 326 Android
CVEs (Common Vulnerabilities and Exposures) patched
within the last 18 months shows that at least 22.7% (74
items) take place in driver context [10].

The concept of exploiting and defending internal
hardware interfaces has been discussed before in the
context of industrial applications on common interfaces
such as I2C, and solutions have been suggested [11].
Today’s reality of replaceable components exposes and
compromises those internal interfaces that were once
protected by being a part of a non-serviceable system.

To the best of our knowledge, ours is the first at-
tempt to attack portable devices by means of a lab
replaceable malicious hardware component.

5. Conclusions and Future Work

The diversity that exists in the mobile phone pe-
ripheral landscape, combined with the high potential
for damage, both via first-order attacks and via second-
order attacks, is a serious concern which has not been
addressed sufficiently by the security community. After
proving the feasibility of kernel exploitation through
hardware communication channels with replaceable pe-
ripherals we intend to complete the demonstration with
a pure hardware attack vector. A device will be designed
that when attached to a smartphone touchscreen con-
troller is capable of committing an attack on the driver
and exploiting a stock device kernel. Further analyses
will be performed on additional phone models and their
vulnerabilities assessed. It is our intention to also in-
vestigate possible countermeasures for such attacks and
compile a set of conclusions and designs that will help
protect both current and future devices. The rich set
of countermeasures which already exists for securing
untrusted interfaces such as network and USB should
also be considered for addressing this problem domain.

References

[1] NXP, I2C-bus specification and user manual, Apr.
2014. [Online]. Available: http://www.nxp.com/docu-
ments/user_manual/UM10204.pdf

[2] Motorola Mobility, “Cracked screens and broken hearts - the
2015 motorola global shattered screen survey.” [Online].
Available: https://community.motorola.com/blog/cracked-
screens-and-broken-hearts



[3] Industrial Control Systems Cyber Emergency Re-
sponse Team, “Advisory (icsa-10-090-01) - mariposa
botnet.” [Online]. Available: https://ics-cert.us-cert.gov/ad-
visories/ICSA-10-090-01

[4] UL, “Counterfeit iphone adapters.” [Online]. Avail-
able: http://library.ul.com/?document=counterfeit-iphone-
adapters

[5] U. Magnusson, Kconfiglib - A flexible Python
2/3 Kconfig parser and library. [Online]. Available:
https://github.com/ulfalizer/Kconfiglib

[6] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur,
M. Conti, and M. Rajarajan, “Android security: a survey of
issues, malware penetration, and defenses,” IEEE Commu-
nications Surveys & Tutorials, vol. 17, no. 2, pp. 998–1022,
2015.

[7] A. Arabo and B. Pranggono, “Mobile malware and smart de-
vice security: Trends, challenges and solutions,” in 2013 19th
International Conference on Control Systems and Computer
Science. IEEE, 2013, pp. 526–531.

[8] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Rib-
agorda, “Evolution, detection and analysis of malware for
smart devices,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 961–987, 2014.

[9] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo,
Z. Sun, A. J. Blumberg, and M. Walfish, “Defending against
malicious peripherals with cinch,” in 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association.

[10] Google, Android Security Bulletin. [Online]. Available:
https://source.android.com/security/bulletin

[11] J. Lázaro, A. Astarloa, A. Zuloaga, U. Bidarte,
and J. Jiménez, “I2csec: A secure serial chip-to-chip
communication protocol,” J. Syst. Archit., vol. 57,
no. 2, pp. 206–213, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2010.12.001


