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Abstract. In today’s interconnected world, Programmable Logic Con-
troller (PLC) devices play a crucial role in controlling and automating
critical processes across various sectors. This increased connectivity, how-
ever, also brings about significant security risks, including the threat of
the PLC’s control flow being subverted through malicious code injected
by state-level actors. This paper offers an exploration of the use of side
channels for control flow monitoring. By analyzing subtle variations in
system behavior, such as power consumption and electromagnetic radia-
tion, these side channels can be effectively leveraged to infer control flow
information, and thus identify potential attacks. To accomplish this, we
employ the emitted signals to train a machine learning model, and eval-
uate our detector by simulating two different types of attacks: malicious
code injection and sensitive data infiltration. Additionally, we provide a
unique comparison between the power consumption and electromagnetic
side channels, highlighting the primary benefits each signal type exhibits
in terms of detecting and preventing attacks. The results presented in
this paper can aid system manufacturers in selecting the most suitable
channel for defending their system, based on the specific requirements
and context of their PLC application.

Keywords: Physical side-channel analysis · Malware detection · Mal-
ware monitoring · PLC environment · Firmware verification.

1 Introduction

The rise in use of cyber-physical systems (CPS), which include smart vehicles, in-
dustrial systems, medical monitoring, robotics, and more, promises to modernize
society and to reduce the burden of human labor [5, 7]. They typically consist of
a large-scale, interconnected system of disparate elements that integrate compu-
tation with physical processes. CPS may significantly increase the effectiveness
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of industrial process control systems (ICS) [19]. Programmable logic controllers
(PLCs) are a vital component of the CPS. They are used by industrial control
systems (ICS) to link to and monitor critical infrastructure, employed in the
manufacturing and process industries to reduce costs and enhance quality, and
were created in response to the requirement to replace traditional programmed
relay panels [8]. PLCs are designed for specific tasks combining multiple func-
tionality in large industries. In recent times, PLCs have largely taken the place
of the control components that were formerly used to execute the logic of the
system [3]. PLCs gather data and communicate with sensors, motors, valves, and
other equipment positioned throughout massive industrial systems to automate
and control manufacturing processes. PLCs are operational devices – they are
directly connected to the physical system in supervisory control and data ac-
quisition (SCADA) in operational technology (OT) and information technology
(IT) [12]. The PLCs themselves are typically observed using a remote human-
machine interface [6, 16].

The increasing reliance on industrial control systems (ICSs) has made them
an attractive target for attackers looking to disrupt operations or gain unautho-
rized access to sensitive information. PLCs are particularly susceptible to attacks
because of their widespread usage and lack of built-in security features. An at-
tacker who gains control of a PLC can directly interfere with the underlying
industrial processor and influence its interactions with the physical world. An
attacker may also use this control of the PLC to exfiltrate secret data, such as
sensor readings, which are exposed to the PLC. One of the most famous attacks
on PLCs is the Stuxnet virus, that tampered with the code running on a PLC
and disrupted the Iranian nuclear program by changing the rotational speed of
the centrifuges [13]. Indeed, preventing attacks on the PLC environment is a
very important task. While traditional security measures, such as firewalls, in-
trusion detection systems, and encryption, can help protect PLC environments
they are not foolproof. As a result, many works have suggested PLC-specific at-
tack deterrence and prevention measures [4, 20, 21]. One measure which has been
suggested for detecting and preventing malware attacks on PLC environments is
the use of non-intrusive passive integrity monitors. Abadi et al. [2] define Control
Flow Integrity as ”security policy dictates that software execution must follow a
path of a Control-Flow Graph (CFG) determined ahead of time”; ensuring this
policy can protect software from control flow hijacking attacks caused by buffer
overflow, code reuse, or similar attacks. One approach for building this monitor
is through the use of power or electromagnetic (EM) radiation side channels. An
anomalous signal would imply a deviation from the predefined CFG, and can be
an indication for an attack. Since the side channel-based monitor is air-gapped
from the rest of the PLC by design, it is not susceptible to the same attack
vectors as the PLC, thereby preventing any potential attacks on the monitor
through similar channels.

Common approaches for passive code monitoring are the power and EM
side channels. Both approaches have advantages and disadvantages, and were
suggested in several works previously, but they were never compared directly in
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a PLC setting. Liu et al. [14] were able to recover the program execution flow
by observing the power consumption of a microcontroller; they inferred what
instruction is most likely executed with an improved hidden Markov model. Han
et al. [12] presented a non-intrusive EM based monitor, and trained an LSTM-
based detector for signals in the time and frequency domains. We adopt some of
their ideas as foundational concepts in our study.

In this paper, we investigate the suitability of physical side-channel analy-
sis to monitoring and preventing attacks in PLC environments. Our approach
leverages advanced signal processing and machine learning techniques to iden-
tify anomalous behavior in the physical signals produced by PLCs and detect
potential attacks. We compare the power and EM side-channel approaches to
identify the most effective side-channel medium to prevent and monitor attacks
on the PLC environment. We leverage both EM and power consumption side
channels to profile the behavior of our Device Under Test (DUT), and train a
machine learning model based on the acquired signals. A general overview of our
experimental environment can be seen in Figure 1.
The contributions of this paper are as follows:

– We provide an anomaly detector to identify attacks against embedded con-
trollers in time critical environments. We simulate two types of attacks, and
evaluate our detector’s effectiveness in detecting them on a popular con-
troller.

– We present a transformer-based model architecture that is agnostic to the
type of data used as input. The architecture is suitable for both EM and
power consumption signals.

– We perform a comparison between the EM and power side channels, and
provide criteria for choosing between them, considering the constraints of
the PLC environment.

Our research, comparing the EM and power side channels, yields valuable in-
sights and guidance for decision-makers to strategically select the optimal moni-
toring approach tailored to their unique environmental conditions. By leveraging
this research, organizations can confidently implement robust security measures,
fortifying their systems against potential attacks and safeguarding critical infras-
tructure with heightened resilience and effectiveness.

1.1 Background

The Power and EM Side Channels A side channel can be defined as a
medium through which sensitive information can be inadvertently revealed dur-
ing the operation of a system. This medium can take various forms, such as
power consumption, EM radiation, timing, or sound. Attackers can exploit side
channels to extract sensitive information, such as cryptographic keys or pass-
words, without direct access to the system’s memory [10]. From the defender’s
perspective, side channels can provide insight into the code that is currently
being executed, allowing them to ensure the system’s reliability.
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Fig. 1: The process of acquiring power and electromagnetic side-channel traces
from the target device and applying the deep-learning techniques to generate in-
dividual models for anomaly detection.

In modern processors, transistors are continually switching on and off, caus-
ing a varying current and resistance in the digital circuit. In addition to this
direct effect on power consumption, any metallic substance in proximity to the
circuit acts as an antenna and transmits an electromagnetic wave in response.
Usually the range of the EM waves is limited, and an amplifier is needed to
enhance the strength of the signal. The shape and characteristics of the signals
produced by these side channels are influenced by two main factors: the executed
instructions and the processed data [15].

This effect makes it possible to gain insights about the instructions and the
data by observing the side-channel trace, making this method a natural candi-
date for anomaly detection based on control flow monitoring. To demonstrate
the effectiveness of side-channel measurements in determining which code is cur-
rently being executed, we ran four different applications (AES encryption, Matrix
multiplication, Random number generator, Idle program) on our DUT, collected
the resulting EM signals and plotted the first 3 PCA coefficients of these signals
on a grid. As Figure 2 shows, it is apparent that each application forms its own
cluster, emphasizing the distinct waves emitted by the DUT during execution.
As this pilot experiment illustrates, side-channel signals can clearly be analyzed
to infer information about the code being executed and the data being processed.

Transformer Networks Transformers are a type of neural network architec-
ture that has gained popularity in recent years by improving the performance
of natural language processing (NLP) tasks. They were first introduced in 2017
by Vaswani et al. [18] as an approach to machine translation, and have since
then transformed the field of NLP. Previous approaches to NLP tasks involved
the use of recurrent neural networks (RNNs) or convolutional neural networks
(CNNs) to process sequences of words. However, these models have limitations in
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Fig. 2: Scatter of four applications after performing PCA on their EM signals.

capturing long-range dependencies and suffer from the vanishing and exploding
gradient problems. Transformers are designed to address these issues by utilizing
a self-attention mechanism that allows them to capture long-range dependencies
without the need for recurrence. The self-attention mechanism in transformers
allows the model to attend to different parts of the input sequence while pro-
cessing each element. This is achieved through the use of attention weights that
determine the importance of each input element to the output. One of the key
benefits of the transformer architecture is its ability to process input sequences
in parallel, making it much faster than traditional RNNs like LSTMs. LSTMs
may, however, suffer from vanishing and exploding gradient problem, and their
parallelization potential is limited since each time step depends on the previous
one. The detection technique in this paper is based on the work of Han et al. [12].
They employed an LSTM-based model, which utilized a hidden state vector to
represent the unobserved code, while the observables were the EM signals.

2 Methods

In order to establish a benchmark for comparing EM and power side channels,
we developed an agnostic detector that identifies the executed code sections and
also detects anomalies during runtime. Subsequently, we evaluated it using both
EM and power signals. The results presented in this paper can serve as a guide
for selecting the suitable monitoring medium based on the specific environmental
conditions of the operator.

To demonstrate this idea, we used the Traffic Alert and Collision Avoidance
System (TCAS) program provided by Han et al. [11]. The program is written
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Source Program:

int binsearch(int x, int v[], int n)
{ 

int low, high, mid; 
low = 0; 
high = n - 1;
while (low <= high) 
{

mid = (low + high) /2;
if (x<v[mid])
 high = mid -1;
else if (x > v[mid])
 low = mid + 1;
else return mid;

} 
return -1;

}
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Fig. 3: Transition from source code to Control flow Graph.

in C and meant to prevent midair collisions between airplanes. It receives as
input information about the position and status of its own and approaching
airplanes. We modified the code by adding function calls which use the general
purpose input output (GPIO) pins of the DUT to signal the measurement tools
the start and end of each scan cycle. Scan cycle is the term used to describe
the repetitive manner in which PLCs operate: they execute a single program
in an infinite loop which reads sensor inputs (e.g. water level sensor), performs
control logic which defines the relations between the input and output values,
then updates the actuators (e.g. activate a pump). Since the control logic does
not change, and since the characteristics of the side signals are mainly influenced
by the instructions and processed data, similar input values should yield similar
side-channel emissions. In practice, however, a single program may have multiple
control flows. Thus, different input values may cause different instructions to be
executed, resulting in different side-channel emissions. To train a robust anomaly
detector, there is a need for a diverse dataset which contains traces that represent
multiple control flows of the program.

To accomplish that, Han et al.[11] fed the source code into the KLEE sym-
bolic execution engine, a static analysis tool that produced multiple sets of vari-
able assignments, where each set leads to a different execution path. For exam-
ple, Figure 3 shows a transition from the source code into a CFG. To follow
the path 1→2→3→5→7→9 in that CFG, certain conditions have to be satisfied:
low ≤ high and x = v[mid]. This set of constraints was next fed into a Satisfia-
bility Modulo Theories (SMT) solver (e.g. Z3) which returns the exact values of
the variables to follow the desired path. This process can be repeated multiple
times to get full path coverage.

After generating the test cases, we executed each test case while collecting
the signals the controller emitted with dedicated equipment. The power and EM
traces were collected simultaneously, to ensure similar operating conditions. We
examined a total of 24 test cases representing different logic control flows.



Comparing EM and Power Side-Channel Monitoring in Embedded Systems 7

The acquired signals form a dataset, where each sample is a side channel
signal, and each label is the execution path that was executed to create it.
This dataset was used to train a transformer-based classifier. If an attacker
were to modify the control logic or hijack the control flow, the emitted signals
would deviate from any known execution. In such case, the confidence of the
classifier for all the possible control flows would be low. Thus, if the maximum
confidence of the classifier over all possible control flows is lower than a pre-
defined threshold, this should trigger an alert. The benefit of this approach is that
the model can both observe the currently executed code and detect malicious
execution. Additionally, this approach doesn’t require any malicious samples for
the training process.

We used a Nordic NRF52-DK as our DUT. This system is equipped with an
ARM Cortex M4 processor running at 64 MHz with 64 KB RAM, and is designed
for the I/O and digital signal control markets [1]. The DUT was connected to a
Keysight B2962A low noise power source. For power consumption measurements,
we used a Keysight MSOS604A Oscilloscope with 1GSa/s with High Resolution
mode. We post-processed the power traces by averaging every 16 samples to
reduce noise. For EM measurements, we used a Tektronix RSA306 Spectrum
Analyzer together with a LANGER LF-U5 probe and PA 303 amplifier at a
sampling rate of 56MS/s.

Measuring power consumption and EM emissions requires a preparation
phase. To perform power measurements, the digital circuit needs to be modi-
fied by cutting the circuit and connecting a resistor and a probe in series to
the power supply. To properly capture EM traces, it is necessary to both find
the signal’s peak frequency and to find the location with the strongest emis-
sions. The peak frequency carries the most valuable features of the signal, and
is unknown in advance. To find the correct frequency the program is executed,
and the spectrum analyzer divides the input signal into its individual frequency
components and displays their amplitudes. The peak frequency corresponds to
the frequency with the highest amplitude. To find the location with the most
dominant signals, we carried out a device cartography step, in which we used
a Secure-IC XYZ positioning stage equipped with SMC100 single axis steppers
to move the probe over several components, including the SOC and the MCU,
and choose the component that showed the highest amplitude. We identified a
location about the processor which showed the most noticeable signals. After
performing these steps, the test cases corresponding to the different execution
paths were executed while collecting both EM and power signals simultaneously.
Each test case was executed 2000 times. The acquired traces are considered as
a behavioral baseline of our DUT.

We trained a transformer-based classifier separately for each signal type af-
ter performing z-normalization, ensuring the signals are on the same scale. The
architecture of the model is inspired by [17], it consists of 8 transformer encoder
blocks with 6 attention heads of size 256. Each block consists of two main compo-
nents: attention and feed-forward. The attention part consists of a normalization
layer followed by attention and dropout layers. The output of the attention com-
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ponent is residually connected to the input sequence and then passed to the feed
forward layer. The feed forward component contains a convolutional layer fol-
lowed by a dropout, convolutional and normalization layers. The output of the
feed forward component is again residually connected to the output of the at-
tention component. Finally, the output of the encoder blocks is fed into a global
average pooling layer and then to a fully connected layer for classification. The
model is trained using the AdaMax optimizer. Each model was trained for 10
epochs. We used 80% of the data for training and 20% for testing. The machine
learning tasks were implemented in TensorFlow 2.6 for Python 3.9 and run on a
cluster containing 58 NVIDIA GeForce GTX 1080 GPUs managed by the Slurm
Workload Manager.

3 Results

As noted above, we were motivated to compare the effectiveness of the power
and EM monitoring methods. Our models serve two purposes: monitoring the
executed code, and identifying deviations from the known control flows. As for
the ability of our models to correctly classify each signal to its relevant execution
path, both models showed good accuracy. The classification accuracy for the EM
and power consumption-based models was 91% and 78%, respectively, meaning
that for a given trace, the model was able to classify it to the correct execution
path, and infer the instructions sequence that was executed. The confusion ma-
trices of the two classifiers are displayed in Figure 4. The EM model shows good
classification results along with some confusion between specific classes, while
the power based model shows confusion between the same classes, along with
additional misclassification between other classes. It is important to note that
this confusion primarily arises because these classes possess only a few differing
instructions, making it challenging to differentiate between them. Nonetheless,
this confusion can be considered insignificant, since operational malware would
incorporate its unique logic and deviate significantly from the program’s known
behavior.

To evaluate the ability of the models to detect attacks, we simulated two
types of attacks: a code injection attack, and data exfiltration attack. The code
injection attack included injecting 5-10 assembly instructions to the source code,
modelling an attacker interested in modifying the behavior of the control logic.
In the second scenario, the data exfiltration attack, the UART pins of the de-
vice were used to leak one byte of sensitive information outside the system. In
the presence of a signal that exhibits substantial deviations from the program’s
known behavior, the classifier’s confidence level in all classes would be relatively
low. Whenever the confidence level fell below a predefined threshold, we catego-
rized it as an anomaly and initiated an alert.

Both models successfully detected most of the attack scenarios, even the
injection of only 5 assembly instructions. AUC reached 97% for the EM model
and 91% for the power model. Interestingly, even though the power model was
significantly less accurate than the EM model as a classifier, it is only slightly less
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Fig. 4: Confusion matrices of the models

effective as an anomaly detector. This emphasizes our claim that this approach
would prove itself upon a case where the malware chunk has more volume. Garcia
et al. [9] assert that the average size of malware, designed with a particular
objective for embedded controllers (such as the corruption of the controller’s
output value), tends to be approximately 2 KB. For that reason, a confusion
between the correct control flows which slightly differ from each other, would be
negligible as the malware side signals become more dominant.

3.1 Performance Analysis

Sampling Rate: Obtaining high-precision equipment like an oscilloscope or a
spectrum analyzer is useful to get more detailed analysis with higher sampling
rates, but can also incur significant expenses. The sampling rate can impact other
aspects, such as the storage and processing requirements for the captured data.
Higher sampling rates generate larger amounts of data, which may necessitate
more storage capacity and computational resources. We wanted to check the
models’ performance by exploring the impact of varying sampling rates, and
retrained the models accordingly. Figure 5 shows the effect of the sampling rate
on the classification accuracy on each signal type. We gradually increased the
sampling rate of each signal, as shown on the x-axis. The scale of the x-axis in
the graphs differs due to the significantly lower maximum sampling rate of the
spectrum analyzer (Fig. 5a) compared to the oscilloscope (Fig. 5b). According to
the figure, the EM classifier requires a much lower sampling rate to reach higher
accuracy, reaching over 90% accuracy at a sampling rate of 56MS/s, whereas
the power model reaches 78% at 1GS/s. Also, while the EM accuracy gradually
improves with increasing sampling rate, the power models exhibit a sharp decline
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Fig. 5: Effect of the sampling rate on the classification accuracy of the models.

around 45MS/s. A possible explanation is that another component of the DUT
operates at the same frequency, aliasing the captured signal. This phenomenon
is not reflected in the EM classifier, since the measurements are much more
localized and are focused only on the component in proximity to the probe.

Noise Resilience: The experiments in this research were conducted under ideal
conditions, with minimal electromagnetic interference or environmental noise
such as heat or humidity; in practice, however, noise is inevitable. To check the
robustness of each model type to noise, we generated white noise with a mean
of 0 and varying standard deviation and added it into the z-normalized signals.
Figure 6 shows how the noise influences the models’ performance. We varied σ,
the strength of the noise, from 0 to 9 as shown in the x-axis, the y-axis shows
the performance metrics (accuracy and AUC). The dashed orange line shows the
performance of the power model while the solid blue line shows the performance
of the EM model. When examining the figure, it becomes apparent that the EM
model demonstrates superior performance in the presence of minor noise, yet it
becomes surpassed as the noise level increases. This makes EM based monitoring
the preferred choice for clean environments with minimal interference to the
captured signal, where it is possible to place the probe in greater proximity to
the measured component, while monitoring through power consumption may be
in favor in rougher settings.

4 Discussion

Despite numerous works which have previously suggested side channel monitor-
ing architectures in PLC environments, to the best of our knowledge, there was
no comparative study between the EM and power channels for the described
topic. This work provides a fair comparison of the power consumption and elec-
tromagnetic side channels. Often, due to budgetary and physical constraints, it
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Fig. 6: Impact of noise on the models performance.

becomes necessary to determine the appropriate signal type for a given appli-
cation. The EM signals were much more centralized and precise, as the probe
is placed above a component of interest. The model that was trained on the
EM signals also showed higher performance metrics (e.g. accuracy, AUC) and
required much lower sampling rate to converge, leading to lighter storage and
computational requirements. On the other hand, EM capturing requires a prepa-
ration phase that includes finding the signal frequency of the examined program
and locating the physical position that emits the most distinguishing signals.
This process is unique to the DUT used, and must be repeated whenever the
hardware configuration of the bill of materials (BOM) changes. The performance
of the EM model was also decreased when faced with noisier samples, a realistic
risk when taking into account the noisy environments where PLCs are typically
found, as well as shielding and extra EM interference that other components
of the system may produce. The power model, on the other hand, showed high
resilience to noise, which is an important attribute, as often PLCs are exposed
extreme environmental conditions. For the downside, measuring power requires
a physical modification to the digital circuit which forces it to be shut down, a
step which may be impossible in some OT settings. Power traces also include
evidence about the consumption of the entire DUT rather than a single com-
ponent like the processor. Additionally, the power model required much higher
sampling rate to converge, resulting in high data volume and heavier processing
power.

Detecting anomalies and identifying potential attacks are of paramount im-
portance in ensuring the security of embedded controllers. Leveraging the power
of side channels, this paper not only provides effective means for detecting such
attacks, but also offers valuable insights to guide the selection of the most appro-
priate side channel medium, facilitating the design of robust defense mechanisms.
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