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Abstract Robotic liquid handlers save human effort and are, in many cases, faster 
and more precise than a human operator. They can be operated and controlled 
remotely and do not require technical programming skills from their operators. 
Unfortunately, like many other high-tech products, robotic wet lab automation may 
have exploitable vulnerabilities and design weaknesses that allow subversion by 
an adversary. The distributed nature and remote control capabilities of wet lab 
automation expand its attack surface increasing the opportunities for an attack to 
interfere with the executed biological protocols, affect medical products, and alter 
test results. Perimeter defenses are known to be insufficient for proper protection 
of systems. Security needs to be considered throughout the entire pipeline of wet 
lab operations, including machinery, local- and cloud-based software, and even 
biological protocols. In this chapter, we review the most prominent types of robots 
in a biological laboratory through the lens of cyber-biosecurity and map the general 
attack surface of wet lab automation. 
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1 Introduction 

Pipetting, preparing, and transferring liquids require considerable time and effort in 
a traditional wet lab environment. Robotic liquid handlers save human effort and are, 
in many cases, faster and more precise than a human operator. Wet lab automation 
goes further, allowing a biologist to automate experiments or production via robotic 
control. It does not require technical programming skills and saves time and effort 
allowing the biologist to focus on the experimental design and data analysis. Wet lab 
automation frameworks can be operated and controlled remotely via a local network 
[1, 2] or even through a cloud [3, 4]. 

The core component of wet lab automation solutions is the lab robot. These 
robots have different capabilities, such as precise work with a pipette, liquid 
temperature control module, and precise liquid distribution, which can replace and 
scale up the work of a human lab technician. These robots carry out multiple steps 
in a biological protocol pipeline, starting with external biological inputs and ending 
with biological products, scientific data, or even clinical recommendations. 

Unfortunately, like many other high-tech products, wet lab automation may 
have exploitable vulnerabilities and design weaknesses that allow subversion by 
an adversary. Regardless of the financial, ideological, or political motivation of 
the attackers, control over the production or experimental pipeline may result in 
serious adverse impacts ranging from disruption of the production to unintended 
and unanticipated dangerous biological byproducts. 

The more distributed a wet lab automation control system is, and the more it 
is exposed to the Internet, the higher is the risk of an attack. Attacks can interfere 
with biological processes, affect medical products, and alter test results. Perimeter 
defenses, such as password-protected access and encrypted communication, are 
known to be insufficient for proper protection of systems. Security needs to be con-
sidered throughout the entire pipeline of wet lab operations, including machinery, 
local- and cloud-based software, and even biological protocols. Cross-site scripting, 
insecure applications, and insecure Internet-of-Things (IoT) controllers wired to the 
robots are just a few examples of potential attack vectors. 

While there are many articles on cyberbiosecurity [5], biosafety and biosecurity 
[6, 7], cyberbiosecurity for DNA synthesis [8], assessing cyberbiosecurity vulnera-
bilities [9], protecting US food and agricultural system [10], harmful algal blooms 
(HABs) and the cyberbiosecurity of freshwater systems [11], and risk perceptions in 
the biotech sector [12], nevertheless, no previous work has discussed the particular 
security context of wet lab automation throughout the multiple steps of running the 
protocol pipeline. 

In this research, we try to bridge this gap and try to shed light on the dangers and 
possible impacts of intervening with the running of a biological protocol in wet lab 
automation and the need to secure its proper execution. 

Our contributions are as follows: First, we build a wet-lab automation ecosystem 
taxonomy and expand on each variable in the taxonomy. We also review a number of 
diverse robots in the field of biological laboratory automation and their capabilities. 
Next, we build and examine the pipeline of a running protocol, mapping the relevant
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parts for each step in the pipeline, and we describe what its role in the pipeline. 
For each step in the pipeline, we examine if it may be vulnerable and describe the 
required permission and access conditions which enable an adversary to attack this 
step. We create the connection between wet lab automation capabilities and the 
attack vectors, which attack vector can affect which capability. Finally, we perform a 
case study on several important lab automation protocols and show how an attacker 
can adversely intervene with them and what are the possible impacts of such attacks. 

Wet lab automation is becoming more widespread supporting increased number 
of applications and deployment possibilities. Thus, it is important to consider the 
security aspects of wet lab automation as early as possible. By doing so, the 
community can prevent security-related configuration blunders with possibly fatal 
consequences. 

2 The Wet Lab Automation Ecosystem 

In this section, we analyze and present the taxonomy of the wet lab automation 
ecosystem as demonstrated in Fig. 1. The taxonomy shows the ecosystem of wet lab 
automation in general. Each leaf in the graph is variable of robot’s criteria. Each wet 
lab automation robot can omit or add the variable in the taxonomy and implement 
him in his way. We present the different implementations and the generic way to 
implement it for each node in the taxonomy tree. The taxonomy breaks down the 
robot into logical parts, the ecosystem part that contains the hardware and software 
of the robot, and its commercial part. 

2.1 Hardware 

This section describes the hardware and physical (nonprogrammable) capabilities 
and component specification of the robot. This section is divided into several 
subsections; each subsection describes the hardware, ability, or physical feature of 
the robot. 

2.1.1 Deployment 

Deployment of robots involves placing the robots and their resources in specific 
location where they can perform their intended tasks. When you are setting up 
the robot laboratory infrastructure, you will be faced with multiple decisions, 
convenience, cost, and quality. There are two main options standing for you: on-
premise robots and cloud robots (lab as a service). In this section, we introduce 
these two options and compare them.
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Fig. 1 Criteria hierarchy for wet lab automation ecosystem 

On-Premise Most of the robots are 3D robots that provide open-source 3D models 
for do it yourself. You need to build the robots and store it in your lab. This requires 
you to access a 3D printer. You’ll need to reserve an area in your lab for the robot 
and make sure you have basic knowledge of hardware assembly. You may need 
to purchase IoT devices (e.g., Arduino) for robot control and other connectable 
modules, for example, tip racks, well plates, and a syringe reactor. These robots 
are more dynamic and can be modified more easily and adapted to the needs of the 
laboratory, but they are less quality and simpler. 

Cloud Lab Automation as-a-Service (CLAaS) Another type of robots are the 
CLAaS. These robots contain work cells that are woven together by an integrated 
stack of control software. A robotic cloud lab is a deeply integrated technology stack 
of biology, hardware, and software made available to its users via the cloud. Unlike 
traditional on-premise robots, a robotic cloud lab flexibly supports multiple assay 
types and is built from the ground up to be controlled remotely. These robots are 
more complex and have more capabilities and are usually also of better quality, but 
sometimes it is more difficult to adapt them to the needs of the laboratory. 

On-premise robots in contrast to CLAaS are more available because the robot 
is located in your lab and can easily adapt to your purpose. But on the other side, 
CLAaS is more maintained and the quality is higher. On-premise lab prices are



The Attack Surface of Wet Lab Automation 283

according to the level of equipment of the robot and quantity of the pluggable 
modules you buy. There are robots that you can buy from the company instead of 
assembling it yourself (i.e., OT-2). 

2.1.2 Biological and Perishable Components 

Here we list the physical components required to operate biological protocols. 

Single and Multichannel Pipette A pipette is a laboratory instrument used to 
measure out or transfer small quantities of liquid. Multichannel pipettes generally 
come with either 8 or 12 pipette heads, easily allowing for a single device to fill 
multiple wells at a single time. 

Pipette Tip Pipette tips are disposable attachments for the uptake and dispensing 
of liquids using a pipette. 

Tip Racks Holders and replacement trays for disposable pipette tips are designed 
and packaged to facilitate the reuse of pipette tip boxes to reduce the overall amount 
of plastic waste. 

Well Plates The well plate is a flat plate that looks like a tray with multiple wells 
that are used as small test tubes. 

Tube Rack Test tube racks are laboratory equipment used to hold upright multiple 
test tubes at the same time. They are most commonly used when various different 
solutions are needed to work with simultaneously, for safety reasons, for safe storage 
of test tubes, and to ease the transport of multiple tubes. 

2.1.3 Compute Units 

Next is a list of common hardware compute units that are responsible for communi-
cation, processing, and control of the robot actuators. 

Stepper Motor Driver Carrier (i.e., DRV8825) Stepper motor drivers are specif-
ically designed to drive stepper motors, which are capable of continuous rotation 
with precise position control, even without a feedback system. Stepper motors 
are used for moving the robots in multiple axes (2 and 3 axes) separately and 
simultaneously. 

Arduino Arduino is an open-source electronic platform based on easy-to-use hard-
ware and software. It’s intended for anyone making interactive projects. Arduino can 
be used for two purposes: as an endpoint that can be connected to robots via Wi-Fi 
and an actuator that communicates with the robots via a proprietary protocol. 

Raspberry Pi Raspberry Pi is a tiny computer about the size of a deck of cards. 
It uses what is called a system on a chip, which integrates the CPU and GPU in a 
single integrated circuit, with the RAM, universal serial bus (USB) ports, and other
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components soldered onto the board for an all-in-one package. Raspberry is used for 
communicating withrobots, that is, EvoBot Raspberry sends the G-code commands 
to the robot through a USB connection. 

2.1.4 Liquid Handling 

Liquid handling is the act of transferring liquid from one location to another in 
a laboratory, usually for testing purposes. The robots have varied types of liquid 
handling capabilities: 

Shake the Tube A hardware module controlled by firmware that is designed to mix 
liquids in different frequencies. 

Vacuum Aspiration A hardware module for pulling liquid up into the pipette tip. 

Blow Out A hardware module for pushing an extra amount of air through the 
pipette tip, so as to make sure that any remaining droplets are expelled. 

Dispense Liquids A hardware module for pushing out liquid from the pipette tip 
into plate or another implement. 

2.1.5 Auxiliary Products 

Some of the robots came with connectable modules that optimize and help with the 
experiment. We mention a short list of these products: 

Camera Module Some robots have the ability to put a camera on top of the robot 
that will record all the experiments; this helps in exploring and understanding the 
experiment. 

Microscope Module It is a pluggable module that helps biologists better observe 
the liquid during the experiment. It is an instrument used to examine objects that 
are too small to be seen by the naked eye. The camera and microscope can combine 
together by recording the experiment through the microscope. 

Temperature Module It is a pluggable module that can control accurately the 
temperature of the liquids. Temperature module is a hot and cold plate module. 

Magnetic Module The magnetic module is a magnetic bead-based chemistry 
block for extraction and purification. It automatically engages and disengages high-
strength magnetic bars to seated well plates for magnetic bead-based purification 
protocols. 

Thermocycler Module Thermocyclers are instruments used to amplify DNA and 
RNA samples by the polymerase chain reaction. 

High-Efficiency Particulate Air (HEPA) Module HEPA is an efficiency standard 
of air filter.
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Sensors In addition to the auxiliary components listed above, some robotic frame-
works for the wet lab also include various sensors, such as: motion sensor, ultrasonic 
sensor, sound sensor, and light sensor. 

2.2 Software 

This section describes the programmable parts in the robot, according to the 
taxonomy tree in Fig. 1. Programmable parts could be software, firmware, or even 
the protocol between the components of the robot. Each subsection describes these 
programmable parts. 

2.2.1 Control Protocol 

The robots use various control protocols, some of which are proprietary and some 
are known standards. 

G-code G-code is a software programming language used to control a computer 
numerical control (CNC) machine. It is used mainly in computer-aided manufactur-
ing to control automated machine tools and has many variants. Raspberry Pi sends 
the G-code commands to the robot through a USB connection. 

uArm Swift Pro Protocol The uArm Swift Pro is an open-source Arduino-based 
robot arm designed for desktop use. Based on the standard G-code protocol, they 
add a new protocol head in front of the G-code so that it can be more easily used 
and debugged. What is more, it is designed to be compatible with the standard G-
code. 

Proprietary Protocols Some robot designers created their own simple control 
protocols suitable for their robot. They programmed Arduino using the analog write 
and read pin functions. 

2.2.2 Software Development Kit (SDK) 

SDK is a collection of software development tools in one installable package. The 
robots provide an SDK for controlling the robots; most of the robots provide a 
python SDK. The SDK contains functionality for full control of the robots. Usually 
the SDK simply sends a hypertext transfer protocol (HTTP) request to a server that 
actually controls the robots, but some run on the computer that controls the robots. 
In some devices, the SDK command translates to Extensible Markup Language 
(XML)-Remote Procedure Call (RPC) (XML-RPC), a protocol that uses XML to 
encode its calls and HTTP as a transport mechanism. You can automate the robot 
action and create protocols by python script and API the robots reveals to the user.
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On-premise robots can be modified, and you can automate it yourself because you 
have the firmware of the IoT devices. 

2.2.3 Operating System (OS) 

Arduino lacks a full operating system, usually writing code that is interpreted by 
its firmware. However, Raspberry Pi has all the features of a computer; it needs an 
operating system to run and comes with a fully functional operating system called 
Raspberry Pi OS. In addition, sometimes there is a personal computer (PC) that 
controls robots or runs the HTTP server; its operating system can be any operating 
system that runs python (especially Windows or Linux). 

2.2.4 User Interface (UI) 

Several robots have interactive webpage graphical user interface (GUI) to control 
the robot, and some have smartphone applications. The GUI displays the entire 
protocol and robot control process and can be changed in any time. Behind the 
scenes, the beautiful GUI is converted to either code running on the IoT device or to 
Application Programming Interface (API) commands. OpenLH, for example, builds 
their GUI with Google’s Blockly interface [13] which is converted to python code 
running on the computer which controls the arm of the robot. Another type of UI 
is the command-line interface (CLI); some robots provide commands that you can 
run from the CLI and automate the robots with it. Another type of robot does not 
provide GUI or CLI; the programmer needs to write the protocol using integrated 
development environment (IDE). 

2.2.5 Access Control 

For most of on-premise robots, there are no security aspects in the software. Some 
of them [1] created an open Wi-Fi by one of the IoT devices, and everyone in the 
same local area network (LAN) can control the robot. Others just need to connect 
to HTTP server through specific port, and you are free to go and run every protocol 
you want. However, CLAaS place more emphasis on security and use well-known 
security models such as hypertext transfer protocol secure (HTTPS) and two-factor 
authentication (2FA); 2FA is a security method that adds an additional layer of 
protection on top of just your username and password. It is a method of verifying 
that the person who is trying to access your account is who they say they are.
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2.3 Commercial Aspects 

This section describes the commercial aspect of the robots. This section describes 
the price ranges of wet lab automation robot types, the support that the developers 
of the robot give, and the community and the distribution of the robots. 

2.3.1 Price 

The robot prices range from $400 for open source and do-it-yourself robots to 
$9000 for robots that you got full assembly with multiple hardware components as 
described above. There are open-source robots that offer you full assembly instead 
of do-it-yourself. CLAaS robots are for subscription. 

2.3.2 Support 

Commercial robots run by companies are including contact support, return policy, 
warranty, and documentation. In contrast, open-source robots are less maintained; 
this is reflected in the lack of good documentation, contact support, and quality. 

2.3.3 Community 

Commercial robots are widely distributed; there are many companies that collabo-
rate with the company that builds the robot; either it’s CLAaS or on-premise. But 
some robots (do-it-yourself) are less distributed, and there are not too many sources 
on the community of these robots. 

2.4 Summary 

Detailing and mapping the taxonomy of wet lab automation ecosystem help us 
to understand better how the robots are built and what their capabilities are. It 
sheds light on where the security failures may be found and where a potential 
attacker could intervene in the system. We analyzed each property in the taxonomy 
considering whether this property may have security failures and whether an 
adversary can utilize it to his advantage.
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3 Biological Laboratory Robots 

In this section, we present some examples of wet lab automation robots. For each 
of them, we detail about its capabilities, hardware, and software. We showcase the 
uniqueness of each robot and how it differs from the other robots shown in this 
section. Furthermore, we attached figures of the robots and links for their open 
source and cited academic articles if exist. 

Review Methodology In order to obtain the information about the robots, we read 
datasheets and published articles describing the robots [1, 14, 15]. To understand 
the developer’s perspective on creating and running custom protocols, we examine 
the robots’ APIs [16, 17] and attempt using the API ourselves. Further, in order to 
understand how a reviewed framework operates behind the scenes, we inspect the 
open-source code of the robots [18–22]. Such inspection often reveals issues not 
listed in the datasheets and API specifications. This review methodology is limited 
in a sense that we did not have access to the source code of all robots. The close 
source robots were examined in a less profound way. In Sect. 6, we elaborate the 
limitations in more detail. 

3.1 Fully Integrable Noncommercial Dispensing Utility System 
(FINDUS) 

FINDUS [1] is an on-premise open-source [20] 3D Printable Liquid-Handling 
Workstation for Laboratory Automation in Life Sciences. FINDUS hardware 
contains: (i) 3D-printed parts with an Anycubic 4Max printer; (ii) four stepper 
motors, for XY drives, Z drive, and pipet drive; (iii) DRV8825 controller boards 
and controlled stepper motors using a motor library provided by Laurentiu Badea; 
and (iv) two Arduino NodeMCU 1.0 (ESP-12E Module). 

FINDUS software builds from python package for controlling the robot from PC 
through Wi-Fi and Arduino code that implements API server for commands from 
PC and controls the movements and shakers. 

FINDUS is able to (i) start/stop shake the tube; (ii) start/stop vacuum aspiration; 
(iii) move in X, Y, and Z axes; (iv) move pipet; (v) move in X and Y axes 
simultaneously; and (vi) set position for X, Y, and Z axis pipette. 

We  can  see in Fig.  2 the FINDUS workstation and its components. There are 
three-axis motion motors, syringe reactor, tip rack, and shaker motor, and more. 

3.2 EvoBot 

EvoBot [14] is an open-source [19], modular, liquid-handling robot for scientific 
experiments. Figure 3 shows a schematic view of the electronics of EvoBot and
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Fig. 2 FINDUS workstation, from FINDUS [1] 

its different printed circuit boards (PCBs). The core of the electronics is based on 
electronics used in the open-source 3D printer community. EvoBot is built from the 
following, as shown in Fig. 4: 

(i) Three layers: an actuation, an experimental, and an observation layers. 
(ii) Actuation layer holds modules and can be moved in the horizontal plane by 

using two stepper motors. 
(iii) Experimental layer supports the objects of the experiment such as petri dishes, 

microscope slides, or tubes. 
(iv) Observation layer is optional, and most modules plugged into this layer are 

used to sense or observe the ongoing experiments, for example, camera and 
microscope.
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Fig. 3 EvoBot electronic schematic view, from EvoBot [14] 

Fig. 4 EvoBot liquid-handling robot, from EvoBot OpenLH [14] 

(v) Three different kinds of modules: a syringe module, a pump-based dispensing 
module, and a heavy payload module (microscope, three-dimensional scan-
ner). 

(vi) Arduino and Raspberry Pi 3. 
(vii) Stepper motors. 

EvoBot includes a software part that contains the following: 

(i) Arduino runs a modified version of the Marlin firmware, which is widely used 
to control 3D printers using G-code. 

(ii) Raspberry Pi sends the G-code commands to the robot through a USB 
connection. 

(iii) Python API gives users access to control the robot.
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Fig. 5 OpenLH, from Ref. [21]. (a) uArm Swift Pro. (b) OpenLH blockly interface 

(iv) Users can interact directly with the robot using a GUI, or they can run programs 
directly on the Raspberry Pi. 

EvoBot is able to perform the following: 

(i) The syringe module moves liquids with precision, it can move the syringe up 
and down in addition to the movement of the plunger. 

(ii) The syringes can be easily replaced by just loosening and tightening one screw. 
(iii) The dispensing module can pump up to four liquids and is used to wash Petri 

dishes or dispense pure reagents into vessels’ start/stop vacuum aspiration. 
(iv) Heavy payload module to hold a 3D scanner. 

3.3 OpenLH 

The OpenLH [15] is an open-source [21] liquid-handling system based on an avail-
able robotic arm platform (uArm Swift Pro) which allows for creative exploration by 
biologists and bio-enthusiasts. OpenLH is built from three main parts: (i) an open-
source robotic arm, uArm Swift Pro [18]; (ii) a linear actuator-operated syringe 
pump; and (iii) the custom-made liquid-handling attachment, as can be seen in 
Fig. 5a. 

The uArm runs on top of an Arduino Mega 2560 with a custom version of Marlin 
firmware (available under GPL license). The robot operates using G-code definitions 
sent through universal asynchronous receiver transmitter (UART) protocol. OpenLH 
software is built from several parts as the following: 

(i) The user may generate different programs manipulating the arm using 
Google’s Blockly interface [13] as can be seen in Fig. 5b. 

(ii) The generated program is then compiled to python code, using the Swift API 
(which compiles to G-code commands). 

(iii) It is possible to save programs for later use and upload images for the Bitmap 
to bioprint feature. 

OpenLH has the following main features:
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(i) Move To: Move the arm to a specific location. To use it, just generate a 
new move to block (from “Robot” section) as well as the relevant coordinate 
block (from “Robot” section). In the coordinate block, X Y Z stands for the 
coordinates, E for extrusion level, and S for movement speed. 

(ii) Move Wrist: Rotate arm’s wrist with the required angle. It is useful to drop 
used tips from the arm to a disposal area. 

(iii) Bitmap to Bioprint: It is an interface that would load a portable network 
graphics (PNG) bitmap, select all the pixels of a single color, and print these 
pixels with the OpenLH. To use it, just generate a new image block (from 
“Image” section) as well as the relevant coordinate blocks (from “Robot” 
section). 

(iv) Manual Position: Puts the arm in disjoint mode, allowing the user to move it 
around manually and sample coordinates. After reaching a desired location, a 
tip to pick up, for example, hit set button to generate the location’s coordinates 
as a new usable block. 

3.4 Opentrons OT-2 

Opentrons [2] OT-2 is an open-source [22] liquid-handling robot. Opentrons OT-2 
is built from following three sections: 

(i) Labware – You must tell the protocol context about what should be present on 
the deck (well plate, tube rack), Labware Library. 

(ii) Pipettes – You define the instruments required for your protocol. You tell the 
protocol context about which pipettes should be attached and which slot they 
should be attached to (11 slots on the deck). 

(iii) Commands define the commands that make up the protocol. The most common 
commands are aspirate, dispense, pickup tip, and drop tip. Opentrons OT-
2 pipette configurations: Single- and eight-channel pipetting, two-pipette 
mounts, for a configuration of one or two single- or eight-channel pipettes. 
Pipettes are easily interchangeable. Opentrons OT-2 contains 11 deck slots 
that enable countless configurations; deck slots are compatible with standard 
SBS dimensions. Deck also includes a removable trash bin. Its connectivity 
is through Wi-Fi 2.4 GHz IEEE 802.11b/g/n, USB 2.0. It can be applied to 
connectable pluggable hardware modules; modules are peripherals that attach 
to the OT-2 to extend its capabilities: (i) temperature, (ii) magnetic, and (iii) 
thermocycler modules, as shown in Fig. 6b. 

Opentrons OT-2 is an open-source do-it-yourself but can be bought from 
Opentrons starting at $5000. The OT-2 Python Protocol API is a simple python 
framework designed to make writing automated biology lab protocols easy. The 
python script is running by Opentrons App. 

Opentrons OT-2 has advanced control: sometimes, you may write a protocol that 
is not suitable for execution through the Opentrons App. Perhaps it requires user
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Fig. 6 Opentrons, from Ref. [2]. (a) OT-2 (b) Pluggable Modules 

input; perhaps it needs to do a lot of things it cannot do when being simulated. 
There are two ways to run a protocol on the OT-2 without using the Opentrons App: 
Jupyter Notebook and CLI. 

Opentrons OT-2 can be used for many purposes, for example, the following 
articles [23–25] show how it was used for COVID-19 polymerase chain reaction 
(PCR) testing automation. 

3.5 Strateos 

Strateos [3, 26] is a CLAaS [27] solution provider. The company’s platform enables 
scientists to design, run, and analyze experiments remotely utilizing Strateos’ 
robotic cloud labs. In addition, Strateos designs, builds, and implements modular 
cloud labs in their clients’ facilities. Clients have the option of toggling between 
their own on-site facilities and Strateos’ remote-controlled cloud labs for small 
molecule drug discovery, biologics, and synthetic biology workflows, advancing the 
digitization of laboratories via a hybrid lab solution. 

Strateos’ core technology is their lab control software that integrates and controls 
various instrument types, ranging from liquid handlers, bioreactors, and high content 
imagers to an array of ultrahigh-throughput screening instruments and devices. This 
modular, cloud-based software addresses common challenges in research operations 
and scientific experiment execution, even in labs with no automation currently. 
Strateos’ software also focuses on solving operational challenges found in labs, 
such as managing experimental requests, asset and workflow calendaring, and 
executing between teams and individual users and enabling automatic data capture 
and centralization of scientific workflows to accelerate the design-make-test-analyze 
cycle and generate AI-enabled data that will aid in the discovery of new scientific 
insights. The software is modular and scalable from control of work cells to multiple 
client facilities as can be seen in Fig. 7b.
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Fig. 7 Strateos, from Ref. [3]. (a) Strateos CLAaS solution. (b) Strateos work cell 

Strateos developed and maintained Autoprotocol [28], as the open-source stan-
dard helping define experiments that are run over the Internet on remote robotic 
automation, moving research into the cloud. Open-source software packages are 
used to organize a collection of protocols and allow customers to build protocols 
using Python, or alternatively clients can access Strateos GUI to build and automate 
protocols. Autoprotocol is a JavaScript Object Notation (JSON) formatted data 
structure that provides a precise way of describing and automating biological and 
chemical protocols in the lab. A run can be submitted by posting properly formatted 
Autoprotocol to the server via the Strateos API. 

3.6 Summary 

In Table 1, we summarize the main components of each robot. Most solutions are 
deployed on-premise with a great deal of customization and lack of standardized 
security controls. This naturally increases the attack surface of open-source wet lab 
automation frameworks. Access control in majority of the solution is based on plain 
HTTP allowing man-in-the-middle attacks. We also observed high similarity among 
the biological protocol processing, server components, and control in different solu-
tions. Vulnerabilities in the implementation and processing of biological protocols 
as well as components responsible for the protocol’s execution may have the most 
severe impacts and thus deserve the most attention of security researchers. 

4 Attack Surface 

This section describes the potential attack vectors among the wet lab automation 
ecosystem. In this section, we analyze each entry point of the system and the all-
pipeline of running protocol from his design and planning until it is running. We 
examine and describe each step in the pipeline and analyze whether it is possible
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Table 1 Comparison of wet lab automation solutions 

Component Robot 

FINDUS EvoBot OpenLH 
Opentrons 
OT-2 Strateos 

Deployment On-premise On-premise On-premise On-premise CLAaS 
Auxiliary 
products 
(short) 

None Camera Sensors, 
temperature, 
electromagnet, 
and camera 

Magnetic, 
thermocycler, 
temperature, 
and HEPA 

Magnetic, 
thermocycler, 
temperature, 
and Illumina 
sequence 

Control 
proto-
Col 

Proprietary 
protocol 

G-code G-code G-code Secretive 

SDK Python 
SDK 

Python SDK 
and API 

Python SDK 
and API 

Python SDK 
and API 

Python SDK 
and API 

OS Arduino Marlin 
firmware and 
raspberry pi 
OS 

Marlin 
firmware 

Proprietary 
embedded 
hardware 

Secretive 

UI IDE GUI GUI GUI and CLI GUI and CLI 
Access 
control 

Open Wi-fi XML-RPC HTTP server HTTP server HTTPS server 
and 2FA 

Fig. 8 Attack surfaces on wet lab automation ecosystem 

to intervene at this step in the final protocol, and if possible, we describe how can 
adversary do this. 

We can see in Fig. 8 the pipeline of running protocol and the potential 
intervention of adversary. The bottom items describe the physical components and 
their connection to the proper step in the pipeline of running protocol. Each step is
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accompanied by a description and variable in the taxonomy tree in Fig. 1. The upper 
arrows coming out of each step express the possible intervention in the protocol or 
in the laboratory spec at this step. The variables that accompanied each step were 
designed to explain which parts are relevant to the intervention at this step. There 
are several articles that describe similar general structures such as on cyber-physical 
system (CPS) networks [29] but not on wet lab automation ecosystem. 

4.1 Design 

When the biologists start planning their protocol, mostly they have two main options 
to design the protocol as described in taxonomy Sect. 2: SDK or UI. Adversary that 
aims to change the protocol can do it with a grip on the biologist’s computer by the 
following techniques: 

Script Injection Adversary can inject himself to protocol script and inject his steps 
to protocol flow and prevent some steps in the protocol. This technique assumes that 
the adversary knows the protocol and knows how to replace specific steps to gain 
his goal. 

Script Generator Intervention Adversary can inject himself to the UI application 
that generates protocol script and controls the protocol that will be generated. This 
technique doesn’t assume anything about the knowledge of the adversary with the 
generated protocol; if the adversary knows the protocol the biologist intends to 
create, he can replace only specific steps with minimal intervention to gain his goal. 
But if he doesn’t know the protocol the biologist intends to create, he can replace 
the generated protocol file to gain his goal. 

Script Replacement If the adversary doesn’t know the biologist’s protocol, the 
adversary can treat the protocol file as a black box, and instead of intervening in 
an existing protocol, he can replace the protocol file with another file as he wishes. 
This technique assumes that the adversary doesn’t know the protocol the biologist 
intends to create. 

Labware Spec Intervention Some robots use labware spec or manifest. The spec 
uses to provide metadata and parameters and describes both labware’s dimensions 
and properties. Adversary can intervene in this manifest and manipulate it in a 
malicious way to influence or damage the results of the protocol. 

Affected Capabilities Design state script manipulation can influence among other 
things the following capabilities: 

(i) Temperature module. Adversary can change the temperature of the temperature 
module and affect the proper procedure of the protocol. 

(ii) Magnetic Module. Adversary can raise the magnets to induce a magnetic field 
in the labware.
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(iii) Thermocycler module. Adversary can change the temperature of the block in 
which samples are located and temperature of the lid heating pad. 

(iv) Vacuum aspiration. Adversary can change the amount of liquid that pulls into 
the pipette tip. 

(v) Dispense liquids. Adversary can change the amount of liquid that push out 
from pipette tip into plate. 

(vi) Blow Out. Adversary can prevent from blowing out the remaining droplets. 

4.2 Deployment 

After the biologist created the protocol script, either by SDK or UI, he needs to send 
the protocol (the script itself or JSON file that represents the protocol (Autoprotocol 
[28])). Adversary that aims to change the protocol can do it with a grip on the 
biologist’s lab network/LAN by the following techniques: 

Man in the Middle (MITM) Attack MITM is a known approach in many cases 
including CPS networks [30, 31]. Most of the open-source on-premise robots come 
with unsecured Wi-Fi and HTTP server and not HTTPS which reveals the biologist 
to MITM attacks. In such robots, adversary can perform MITM between the 
biologist’s computer to HTTP server and modify the command the protocol that is 
sent to the server without the knowledge of the biologist. In addition, the attacker can 
change the labware spec to manipulate the lab environment for malicious purpose 
and damage or manipulate experiment results. 

Impersonate Biologist Due to insecure control on on-premise robots, adversary 
can impersonate biologist’s computer and control the robot and run any protocol he 
wants. This technique assumes that adversary has grip on some device in biologist’s 
lab, that is, another computer in the network, the access point (Arduino). 

Wi-Fi Sniffing Adversary can sniff the traffic on an open Wi-Fi using grip if 
a malware is present on some computer near the robot. Operating sniffing tools 
in a monitoring mode to collect traffic in open Wi-Fi networks does not require 
authentication. Thus, unencrypted Wi-Fi channel opened by one of the robot’s 
components facilitates leakage of information about the running protocols in the 
lab and their results. 

4.3 Execution 

Finally, the protocol (Python script or JSON file) arrived to server that controls the 
robot and runs the protocol. Because in some robots the protocol represents using 
python script that runs as is in the server, adversary could run an arbitrary code 
(remote code execution (RCE)) in the server without the knowledge of the biologist. 
Running on the server that controls the robot could lead to dire consequences on the
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lab and protocol results. Execution is too late for intervention in the labware spec. 
Adversary with a grip on the server can make the following actions: 

File System Manipulation Adversary that changed the protocol using one of the 
ways we mentioned above can manipulate the file system by inserting python 
commands into the protocol that accesses the file system. Adversary can do this 
because script execution is performed in an unsafe environment and not using 
restricted python [32]. Lack of restricted python and trust in the script itself without 
integrity validation of the script can lead to unwanted results of the protocol and 
leakage of results of previous protocols running on the robot. This attack vector 
assumes that adversary has grip on the server that runs the protocols and the 
protocols are sent to the server, which is a Python script that the server is running. 

G-Code Command Intervention Most of the robots are controlled by G-code 
commands as mentioned in the taxonomy of wet lab automation. The server that 
runs the protocol actually sends G-code commands to the robot according to the 
command in the script. Adversary with knowledge on the G-code commands that 
are sent to the robot, which is not an unfounded requirement because all the robots 
we mention are open-source, with grip in the server can create its own G-code 
commands and send them to the robot to manipulate the running of the protocol 
or run preliminary steps to control the results of the protocol that the server intends 
to run. 

Actuator Hijacking Actuator is the controller (Arduino/Raspberry Pi) that actu-
ally moves the robot in axes and controls the liquid handling. Those actuators are 
usually unsecured and written in the simplest way; in most of the types, it is Arduino 
that gets the G-code commands through USB or UART. If the adversary could hijack 
actuator through a vulnerability he exploits via USB or UART, he can run arbitrary 
code on the actuator and actually do whatever he wants, run commands as desired, 
skip commands from the biologist, and even leak the protocol using Wi-Fi that is 
sometimes found on these actuators. Adversary can control the Arduino using one 
of the vulnerabilities it exposed as detailed in security analysis and exploitation of 
Arduino devices in the Internet of Things [33]. 

5 Misuse Cases 

In this section, we describe several automation processes in the biological field; we 
explain the process and how automation fits into them and its importance. In each of 
the processes, we explain how an attacker can intervene in it and what the possible 
damages are to such an attack.
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5.1 Personalized Medicine 

As genetic technology is improving, personalized medicine will replace conven-
tional treatment [34, 35]. Together with the great hopes of tailor-made medicine, we 
identify a greater potential of damage due to automation failures. 

For example, tissue testing is applied in cases of cancer to choose the best 
biological chemotherapy or its combined treatment using automated screening 
methods to comply each specific case. 

DNA or RNA aptamer use for general and personalized therapeutics has shown 
great promise [36, 37]; production of template RNA/DNA aptamers is commonly 
done using automated DNA synthesis methods [38] that produce the required 
strands in a sequential way. 

Attack on the DNA synthesis is presented in [39], who show acoustic side-
channel attack methodology which can be used on DNA synthesizers to breach their 
confidentiality and steal valuable oligonucleotide sequences. The potential attack 
could result in null effect of the treatment or damage to the tissue. 

High-throughput screening of dedicated medicine and factors including repur-
posing of generic drugs to measure hit conformation with a robust effect on the 
tested tissue. 

Intervention in personalized medicine process can be performed by the follow-
ing: 

(i) Damage of the tissue while using nondrug-related influence and temperature 
can cause mismatches of hit confirmation and treatment of patients using 
noneffective drugs. 

(ii) Damage the process of the drug administration for the screening. 
(iii) Its weak point is its flexibility because it supports many types of treatments, so 

it can be disrupted relatively easily and substances can be omitted or added to 
the drug if adversary has grip on the robot. 

5.2 COVID-19 PCR Tests 

Automation of PCR testing [40, 41] is already used everywhere. PCR is the 
duplication and amplification of short and long DNA oligos. This process allows for 
the detection of minuscule samples of DNA [42] and is used to detect the presence 
of the COVID-19 virus in human samples. The impact of mistakes here could be 
dramatic on public health. 

Intervention in automation of PCR testing can cause several damages as the 
following: 

(i) Integrity. Adversary can damage the integrity of the test through swapping 
the samples of people and cause impairment of the test’s integrity. Moreover, 
adversary can damage the integrity using malware on the PCR reader that alters
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the screening report and swapping people results. Adversary using a malware 
on the robot can manipulate the liquid’s temperature and cause false-negative 
or positive results. 

(ii) Confidentiality. Adversary with grip on the automation ecosystem can release 
the PCR test results to the public. 

5.3 Sportsmen Doping Test Control 

Doping is an old well-known issue in professional sport [43]. Throughout the 
process of competitive competition, many drug tests are conducted. The process 
includes sampling the sportsmen and women and identifying illegal substances 
in their blood or urine. The preparation and measurements of the samples using 
automated measures could provide a solution for many cases where the results are 
needed in a short time. While automation provides great advantages, it also poses 
risks to the integrity and coding of the samples and possibilities of cyber-attacks that 
can meddle in the analysis and reporting process of the results. 

Similar to PCR tests, adversary can swap the samples of sportsmen and cause 
impairment of the test’s integrity, swapping test of sportsmen that took drugs with 
test of clean sportsmen to evade punishment. In addition, adversary can contaminate 
the test with the standard that the test compares to and cause to a clean athlete to be 
considered to have taken drugs. 

5.4 On-site Drug Production and Dispensing 

In many cases, on-site production is necessary [44, 45]. It can reduce shipping 
costs and improve the quality of multiple products, especially medicine, such as 
vaccines that need special preserving conditions. The on-site robots will prepare the 
drugs using liquid and powder handling automation. Furthermore, they will provide 
necessary dispensing of ready-made tablets and liquids per client. 

While providing great economic advantages, on-site production also poses 
threats through cyber-attacks that interfere or meddle in the preparation or tagging 
process of the prepared drugs. 

Because of the automation of the process, adversary can cause robots to return 
the wrong type of medicine without the knowledge of the patient. Adversary also 
can damage the production of the medicine by omitting important substances of the 
medicine. Moreover, adversary could change the labels of allergen on the medicine 
package and cause people to have allergic reaction that could endanger their lives.
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6 Summary and Conclusions 

Key Takeaways In this chapter, we have analyzed the potential attack surface in the 
wet lab automation ecosystem. The most important finding from the analysis is that 
the biological protocol implemented as a Python script is dangerous. Vulnerabilities 
in the protocol editing tools, components that interpret and execute the protocols, 
and components operated by the protocols can lead to severe adverse consequences 
as described in Sect. 5. Some consequences can be prevented digitally by signing 
the protocol and executing it in a secured environment such as restricted python 
[32]. In general, a user-provided script should never be considered trusted. 

Furthermore, many components in the robot environment are distributed and 
wireless. This allows the attacker to intervene with the robot operation in several 
stages. Therefore, secure operation of the robot requires hardened communication 
between the components. 

Limitations Our collection data methodology for each device has some limitations 
because there are robots we haven’t their source code and only API and datasheet 
documentations. It could be that some of the data we had on the rest of the robots 
does not quite fit these robots. Moreover, we didn’t actually implement a real attack 
on these robots; it could be that the vulnerabilities we mentioned are not existing in 
some robots also because of a possible mismatch between the design of the system 
and its actual implementation. On the one hand, the attacks can be less deadly and 
dangerous than we have described, but on the other hand, the opposite is also true 
and attacks can be even more dangerous than we described. 

Related Work Cyberbiosecurity is proposed as a new discipline at the interface of 
cybersecurity, CPS, and biosecurity to help safeguard the bioeconomy [5]. The first 
paper on cyberbiosecurity was focused on biotechnology and its security concerns 
[6]; it explained that biotechnology workflows are cyber-physical processes and 
illustrated with biomanufacturing process [7]. map the cyberbiosecurity landscape, 
in biotechnology and digitization of traditional technology. They explained about 
biosecurity on automation processes similar to us and cyberbiosecurity on artificial 
intelligence (AI) techniques across the biology sector [8]. illustrate malicious DNA 
injection performed by a remote cyber-criminal in DNA synthesis process and offer 
some mitigations. Protecting US food and agricultural system is reviewed [10], 
the cyberbiosecurity concepts from food production to the end user are explored, 
challenges are described, and solutions to integrate cyberbiosecurity in food and 
agricultural sectors are recommended. According to [12], cyberbiosecurity risks are 
difficult to characterize due to their diversity in types of threats, targets, and potential 
impacts. 

Future Work The prevalence of attack vectors in wet lab automation frameworks 
suggests that we cannot rely only on perimeter protection and standard security 
controls. In order to continue providing the flexibility and power of custom design of
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biological protocols, future wet lab automation frameworks should be robust against 
subversion of their components. 

Future research is required to illustrate the dangers of cyber-attacks on biological 
protocols and offer better protections of the wet lab automation systems: (i) 
identifying vulnerable protocol whose results can be manipulated without alerting 
the biologist, (ii) investigating process signing approaches for biological protocols, 
and (iii) designing adversary resilient distributed wet lab automation systems where 
every component ensures the correct operation of other components. 
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